RELAZIONE GENERALE

OGGETTO: Grande Progetto centro storico di Napoli – valorizzazione del sito UNESCO – POR FESR 2014/2020-Asse VI – Priorità di investimento 6c - obiettivo specifico 6.7 – azioni 6.7.1 e 6.8.3 - Intervento n. 10: Lavori di recupero e rifunzionalizzazione dell'ex convento dei Santi Severino e Sossio, sede dell'Archivio di Stato, finalizzati all'ampliamento della fruizione e alla valorizzazione e divulgazione dei fondi archivistici di particolare pregio. CIG:5352053DD7 - CUP: B68I12000930003

Importo totale di aggiudicazione € 2.858.478,80 compresi oneri di sicurezza intrinseci ed indiretti, nonché oneri di smaltimento, non soggetti a ribasso oltre IVA, al netto del ribasso del 38,222% Direzione dei Lavori: arch. Rosalia D'Apice (disp. n. 23 del 10.10.2019)

Direzione Operativa: dott.sa Annunziata D'Alconzo, dott.sa Maria Tamajo Contarini

Appaltatore: Capriello Vincenzo s.r.l.Contratto n. 86277 del 18 febbraio 201

Intervento di progettazione di una scala in Acciaio

UBICAZIONE: Piazzetta del Via del Grande Archivio (NA).

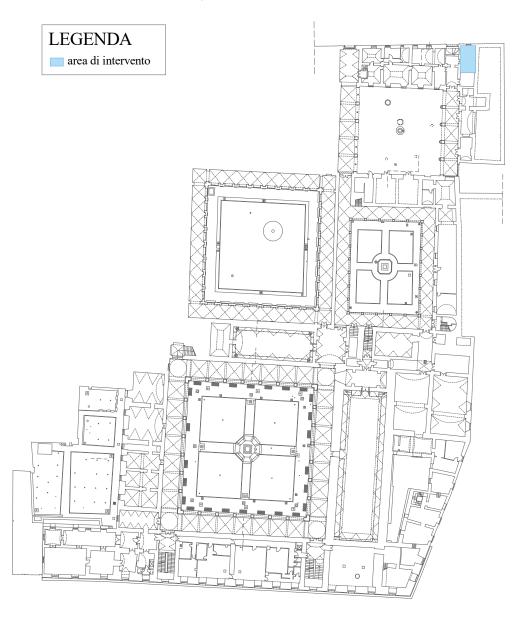
PROGETTISTA ARCHITETTONICO E D.L.

Arch. Rosalia D'Apice Soprintendenza ABAP

PROGETTISTA STRUTTURALE

Ing. Domenico Brigante

Via Riviera di Chiaia 118 – 80122 Napoli


Sommario

1-	Descrizione generale dell'opera	3
2-	Normativa di Riferimento	3
3-	Materiali impiegati e resistenze di calcolo	4
4-	Materiali esistenti	5
5-	Livelli di Conoscenza e Fattori di Confidenza	(
6-	Analisi dei carichi e verifica della scala in acciaio	6
	Analisi dei carichi e sollecitazioni agenti sulla struttura:	7
	Verifica a Flessione:	8
	Verifica a Taglio:	9
	Verifica di deformabilità:	9
	Verifica di stabilità flesso torsionale:	9
(Collegamento gradino	. 10
	Analisi dei carichi e sollecitazioni agenti sulla struttura:	. 11
-	Verifica di impronta sulla muratura:	. 13

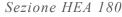
1- Descrizione generale dell'opera

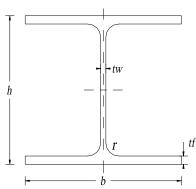
L'edificio preso in esame è l'Archivio di Stato, situato in Piazzetta del Via del Grande Archivio. Scopo dell'intervento è quello di realizzare una scala di collegamento in acciaio nel vano adiacente all'ingresso su Vico San Severino.

Vista Planimetrica dell'intero edificio con individuazione dell'area di intervento

2- Normativa di Riferimento

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:


- 1- "Nuove Norme Tecniche per le Costruzioni" –DM 17.1.2018; NTC-18;
- **2-** Circolare n.7 del 21/1/2019
- **3-** Legge regionale-9-1983; Regolamento- 4-2010
- 4- UNI EN 1993-1-8-2005 (Eueocodice 3)



3- Materiali impiegati e resistenze di calcolo

Tutti i materiali strutturali impiegati devono essere muniti di marcatura "CE", ed essere conformi alle prescrizioni del "REGOLAMENTO (UE) N. 305/2011 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 9 marzo 2011", in merito ai prodotti da costruzione.

Per la realizzazione dell'opera in oggetto sarà impiegato il seguente materiale:

Sigla	E	b	h	tw	tf	r	Peso	Sezione		uli di tenza
HEA	Mpa	mm	mm	mm	mm	mm	kg/m	cm ²	Wx	Wy
									cm ³	cm ³
180	205000	180	171	6	9,5	15	35,5	45,25	293,6	102,7

Caratteristiche meccaniche da NTC (Tab. 4.2.1)

	Spessore nominale "t" dell'elemento						
Norme e qualità degli acciai	t ≤ 40	mm	40 mm < t ≤ 80 mm				
	f _{yk} [N/mm ²]	ftk [N/mm²]	fyk [N/mm ²]	ftk [N/mm²]			
UNI EN 10025-2							
S 235	235	360	215	360			

Inoltre:

coefficiente di Poisson: 0,3 [-]

 $\alpha = 0.000012$ /°C

Calcolo della Resistenza di Progetto (NTC 18 4.2.4.1.1.):

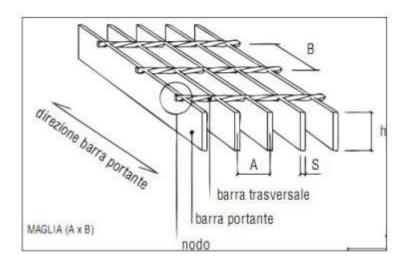
$$f_{yd} = \frac{fyk}{rM1} = \frac{235}{1.05} = 223,80 \text{ [N/mm}^2]$$

con coefficiente di sicurezza (Tab. 4.2.VII):

$$\gamma M1 = 1.05$$
 [-]

Caratteristiche geometriche per gradini di tipo keller:

Gradino formato con grigliato tipo elettroforgiato: l'unione delle barre portanti alle barre trasversali avviene mediante l'azione combinata di elettrosaldatura - senza apporto di materiale - e di pressione, concentrata su tutti i nodi. Questo procedimento determina la compenetrazione delle barre trasversali nelle barre portanti.


- Passo piatti portanti (A): 15 mm
- Passo collegamenti (B): 76 mm

Sezione piatti portanti (hxS): piatto 30x2
Sezione collegamenti: tondo liscio 4 mm

- Profilo rompivisuale: lam. punzonata sp. 2 mm

Piastre laterali: piatto 60x3
Bulloni di fissaggio: M1 cl. 8.8
Peso zincato cad.: 13.96 kg

4- Materiali esistenti

Il rilievo geometrico-strutturale è stato riferito alla geometria complessiva dell'organismo comprendendo i rapporti con le eventuali strutture in aderenza.

Nella fattispecie si fa riferimento alle seguenti tabelle da Circolare 2019-NTC2018.

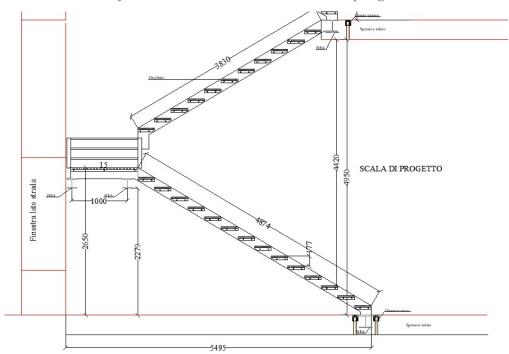
Tabella C8.5.1 - Circolare 2019 NTC 2018

Tipologia di muratura	f (N/mm²)	τ ₀ (N/mm²)	f _{V0} (N/mm²)	E (N/mm²)	G (N/mm²)	w (kN/m³)
	min-max	min-max		min-max	min-max	
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	-	690-1050	230-350	19
Muratura a conci sbozzati, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	-	1020-1440	340-480	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074	E	1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	-	900-1260	300-420	13 ÷ 16(**)
Muratura a conci regolari di pietra tenera (tuto, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,10-0,19	1200-1620	400-500	
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2400-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0,05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura in mattoni semipieni con malta cementizia (es,: doppio UNI foratura ≤40%)	5,0-8,0	0,08-0,17	0,20-0,36	3500-5600	875-1400	15

5- Livelli di Conoscenza e Fattori di Confidenza

Sulla base delle informazioni acquisite successive alle indagini conoscitive sull'esistente con riferimento alla Tabella di seguito riportata (§C8.5.IV) sono stati acquisiti il LIVELLO DI CONOSCENZA (LC) ed il FATTORE DI CONFIDENZA (FC) seguenti:

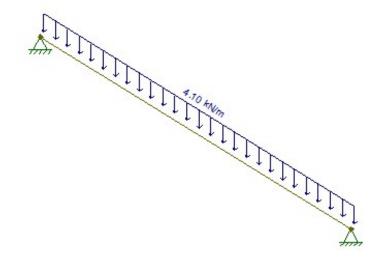
Tabella C8.5. IV - Livelli di conoscenza in funzione dell'informazione disponibile


Livello di conoscenza	Geometrie (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC (*)
LC1		Progetto simulato in accordo alle norme dell'epoca e indagini limitate in situ	Valori usuali per la pratica costruttiva dell'epoca e <i>prove limitate</i> in situ	Analisi lineare statica o dinamica	1,35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in	Elaborati progettuali incompleti con <i>indagini</i> <i>limitate</i> in situ; in alternativa <i>indagini estese</i> in situ	Dalle specifiche originali di progetto o dai certificati di prova originali, con prove limitate in situ; in alternativa da prove estese in situ	Tutti	1,20
LC3	alternativa rilievo completo ex-novo	Elaborati progettuali completi con indagini limitate in situ; in alternativa indagini esaustive in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con prove estese in situ; in alternativa da prove esaustive in situ	Tutti	1,00

^(*) A meno delle ulteriori precisazioni già fornite nel § C8.5.4.

6- Analisi dei carichi e verifica della scala in acciaio

La presente relazione tecnica illustra i criteri generali e le procedure adottate per la progettazione della scala in acciaio posta all'interno dell'Archivio di Stato. (§C4.2.4 - NTC 2018);


Grafico illustrativo della struttura di progetto.

Partendo dalla rampa che va dal piano terra al pianerottolo (z=2.65m)

Schema trave appoggiata-appoggiata

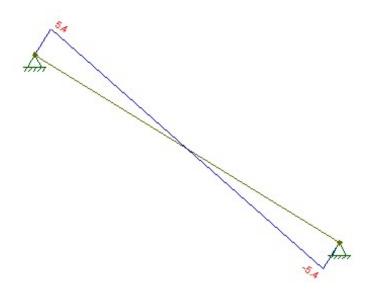
La sezione ipotizzata come già annunciato è: HEA 180

Analisi dei carichi e sollecitazioni agenti sulla struttura:

$$f_{yk} = 235 [N/mm^2]$$

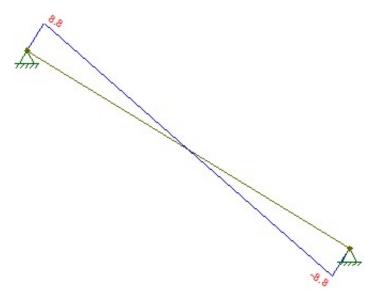
$$f_{yd} = \frac{fyk}{rM1} = \frac{235}{1.05} = 223,80 \text{ [N/mm}^2]$$

$$G_K = (G_{GRADINOGRIGLIATO} + G_{PARAPETTO}) = 0.5 + 0.14 = 0.64 \text{ [kN/mq]}$$

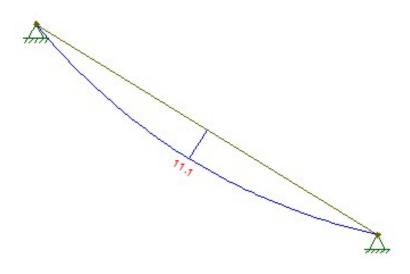

$$Q_K = 4 [kN/mq]$$

Lunghezza gradino = 1,2 [m]

$$q_{K} = \frac{\left(1,3x0,64+1,5x4\right)x\,1,2}{2} = 4,10 \text{ [kN/ml] combinazione di carico allo SLU}$$


Di seguito si riportano i diagrammi delle sollecitazioni:

Sforzo Normale:



N_{SD}: 5,4 [kN]

T_{SD}: 8,8 [kN] Momento:

M_{SD}: 11,1 [kNm]

Verifica a Flessione:

Secondo le vigenti normative la verifica a flessione va effettuata confrontando il massimo momento sollecitante in condizioni ultime con il momento resistente della sezione considerata, in particolare (§C4.2.4 - NTC 2018):

$$M_{Rd}$$
 = fyd x Wx = 223,80 x 293600,00 [Nmm] = 65,70 [kNm]

$$M_{sd} = 11,1 [kNm]$$

 $M_{\text{Sd}} \! < \! M_{\text{Rd}}$

La verifica risulta soddisfatta

Verifica a Taglio:

Secondo le vigenti normative la verifica a taglio va effettuata confrontando il massimo taglio sollecitante in condizioni ultime con il taglio resistente della sezione considerata, in particolare (§C4.2.4 - NTC 2018):

$$\begin{split} V_{Rd} &= \frac{(\text{Av x fyd})}{\sqrt{3}} = 186968, 30 \text{ [N]} = 186, 96 \text{ [kN]} \\ \text{Av} &= \text{A} - 2 \text{ x b x tf} + (\text{ tw} + 2 \text{ x r}) \text{ x tf} = 4525 - 2 \text{ x } 180 \text{ x } 9, 5 + (\text{ } 6 + 2 \text{ x } 15 \text{ }) \text{ x } 9, 5 = 1447 \text{ [mm}^2] \\ V_{sd} &= 8, 8 \text{ [kN]} \end{split}$$

$$V_{Sd} < V_{Rd}$$

La verifica risulta soddisfatta

Verifica di deformabilità:

Bisogna altresì verificare la scelta operata eseguendo una verifica di deformabilità allo SLE (§C4.2.4 - NTC 2018):

$$q_{K}\!=\!\frac{\left(1x0,\!64+0,\!7x4\right)x\,1,\!2}{2}\!=2,\!06\;[kN/m]=0,\!0026\;[kN/mm]$$

Tabella 2.5.I delle NTC18- combinazione SLE

Categoria/Azione variabile	ψ_{q}	ψ_{ij}	Ψ2
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Casegoria B - Uffici	0.7	0.5	0,3
Categoria C - Ambienti suscettibili di affollamento	0.7	0.7	0.6
Categoria D - Ambienti ad uso commerciale	0,7	0.7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0.8
Categoria F - Rimesse , parcheggi ed aree per il traffico di vescoli (per autoveicoli di peso 5 30 kN)	0,7	0,7	0,6

$$\delta_1 = \frac{5}{384} \times \frac{qxL^4}{E_a \times I_{tot}} = 0,002 \text{ [mm]} = 0,0002 \text{ [cm]}$$

$$\delta_{LIM} = L/250 = 4874/250 = 19,50 \text{ [mm]} = 1,9 \text{ [cm]}$$

$$\delta_1 < \delta_{LIM}$$

La verifica risulta soddisfatta

Verifica di stabilità flesso torsionale:

La verifica nei riguardi dell'instabilità flesso-torsionale secondo la formula (§C4.2.4 - NTC 2018):

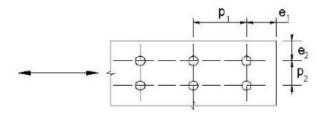
$$\frac{M_{Ed}}{M_{h,Rd}} \leq 1$$

dove M Ed è il massimo momento flettente di calcolo e M b Rd, è il momento resistente di progetto per l'instabilità. Tale momento, può essere assunto pari a:

$$M_{b,Rd} = \chi_{LT} \times W \times x \text{ fyd} = 197131428,6 \text{ [Nmm]} = 197,13 \text{ [kNm]}$$

 χ_{LT} è il fattore di riduzione per l'instabilità flesso-torsionale, consigliabile per sezioni laminate e comunque compreso tra 0,2 e 0,4. [-]

 $M_{Sd} < M_{b,Rd}$


La verifica risulta soddisfatta

Collegamento gradino

Il collegamento del singolo gradino con il profilo HEA180, precedentemente analizzato, dovrà essere effettuato mediante degli angolari che dovranno essere bullonati ai gradini. Gli angolari adottati sono delle L60x40x4. Poiché ciascun gradino è appoggiato all'angolare i bulloni sono soggetti allo sforzo normale di compressione, pertanto, non occorre effettuare alcuna verifica. E' necessario però rispettare I limiti di normativa imposti in merito alle distanze tra i bulloni e i bulloni dal bordo della piastra. La normativa NTC 2018 al punto 4.2.8.1.1 attraverso la tab. 4.2 XVIII prescrive delle caratteristiche geometriche da rispettare nel posizionamento dei fori per evitare meccanismi di rottura fragile e fenomeni di instabilità locale.

I fori devono avere diametro uguale a quello del bullone maggiorato al massimo di 1 mm, per bulloni sino a 20 mm di diametro, e di 1,5 mm per bulloni di diametro maggiore di 20 mm. Si può derogare da tali limiti quando eventuali assestamenti sotto i carichi di servizio non comportino il superamento dei limiti di deformabilità o di servizio. Quando necessario, è possibile adottare "accoppiamenti di precisione" in cui il gioco foro-bullone non dovrà superare 0,3 mm per bulloni sino a 20 mm di diametro e 0,5 mm per bulloni di diametro superiore, o altri accorgimenti di riconosciuta validità. Per fori asolati o maggiorati devono essere utilizzate le indicazioni riportate in UNI EN 1993-1-8.

Fig. 4.2.5 – Disposizione dei fori per la realizzazione di unioni bullonate o chiodate

Tab. 4.2.XVIII - Posizione dei fori per unioni bullonate e chiodate

Distanze e			Massimo	
interassi (Fig. 4.2.5)	Minimo	Unioni esposte a fenomeni corrosivi o ambientali	Unioni non esposte a fenomeni corrosivi o ambientali	Unioni di elementi in acciaio resistente alla cor- rosione (UNI EN10025-5)
e_1	1,2 d ₀	4t+40 mm	i -	max(8t;12 mm)
e ₂	1,2 d ₀	4t+40 mm	-	max(8t;125 mm)
P 1	2,2 d ₀	min(14t;200 mm)	min(14t;200 mm)	min(14t;175 mm)
P _{1,0}	(=)	min(14t;200 mm)		
$p_{1,i}$	i n s	min(28t;400 mm)	-	
P ₂	2,4 d ₀	min(14t;200 mm)	min(14t;200 mm)	min(14t;175 mm)

Adottando bulloni M10, classe 8.8, e considerando uno spessore pari a 4mm:

 $e_1 \geq 12mm \,$

 $e_2 \ge 12mm$

 $e_1;e_2 \ge 56mm$

 $p_1 \ge 22mm$

 $p_2 \ge 22mm$

 $p_1; p_2 \ge 56mm$

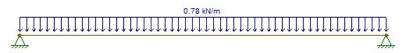
Si considera dunque una fila di tre bulloni M10.

Analisi dei carichi e sollecitazioni agenti sulla struttura:

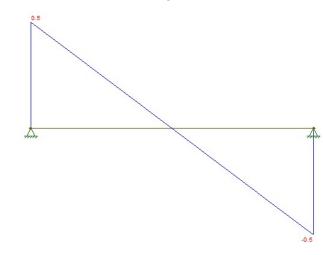
$$f_{yk} = 235 [N/mm^2]$$

$$f_{yd} = \frac{fyk}{\gamma M1} = \frac{235}{1.05} = 223,80 \text{ [N/mm}^2]$$

 $G_K = (G_{GRADINOGRIGLIATO}) = 0.5 [kN/mq]$


 $Q_K = 4 [kN/mq]$

Lunghezza gradino = 1,2 [m]


 $q_{K,GRADINO} = (1,3x0,5 + 1,5x4) \times 1,2 = 0,78 \text{ [kN/ml]}$ combinazione di carico allo SLU

Di seguito si riportano i diagrammi delle sollecitazioni:

Schema trave appoggiata-appoggiata

Taglio:

 T_{SD} : 0,5[kN]

Momento:

M_{SD}: 0,1 [kNm]

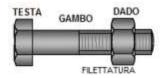
Si ipotizza una verifica a taglio-tranciamento prendendo come forza tagliante la reazione vincolare di appoggio nel caso in cui il gradino faccia lavorare i bulloni a taglio.

Si considera la sollecitazione di Taglio in appoggio e la divido per il numero di bulloni.

Dunque:

 $V_{SD,BULLONE} = (0.5/3) = 0.167 [kN]$

Per la verifica a Taglio-Tranciamento si considera:



$$\tau = \frac{640}{1,05*\sqrt{3}} = 351,91 \text{ [N/mm}^2] = 0,351 \text{ [kN/mm}^2]$$

Tabella 11.3.XIII.b -NTC2018

Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{vb} (N/mm ²)	240	320	300	400	480	640	900
f _{tb} (N/mm ²)	400	400	500	500	600	800	1000

Tabella proprietà geometriche bulloni

Le dimensioni caratteristiche di un bullone sono:

- d diametro nominale del gambo
- p passo della filettatura
- Ares area resistente

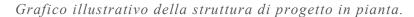
CARATTERISTICHE BULLONI

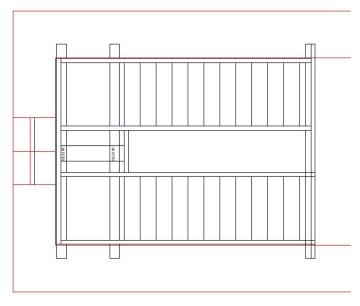
d	р	Ares	Â	A res /A
8	1.25	38.6	50.3	0.77
10	1.50	58.0	78.5	0.74
12	1.75	84.3	113	0.75
14	2.00	115	154	0.75
16	2.00	157	201	0.78
18	2.50	192	254	0.75
20	2.50	245	314	0.78
22	2.50	303	380	0.80
24	3.00	353	452	0.78
27	3.00	459	573	0.80
30	3.50	581	707	0.82

ď	р	Ares	А	A _{res} /A
33	3.5	694	855	0.81
36	4.0	817	1018	0.80
39	4.0	976	1195	0.82
42	4.5	11.20	1385	0.81
45	4.5	1310	1590	0.82
48	5.0	1470	1810	0.81
52	5.0	1760	2124	0.83
56	5.5	2030	2463	0.82
60	5.5	2360	2827	0.83
64	6.0	2680	3217	0.83
68	6.0	3060	3632	0.84

- d Diametro Bullone (mm.)
- p Passo filettatura (mm.)
- Ares Area Resistente (mmq.)

 $V_{RD} = \tau x_{ABULLONE} x_{BULLONI} = 0.351 x_{58,00} x_{3} = 61,074 [kN]$


Pertanto:


 $V_{SD,BULLONE} < V_{RD}$

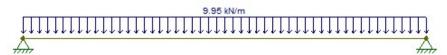
La verifica risulta soddisfatta

Verifica di impronta sulla muratura:

Per la verifica di impronta sulla muratura si parte dall'analisi dei carichi agenti sulla trave che poggia sulla muratura esistente.

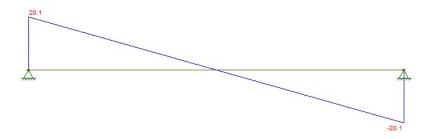
$$f_{yk} = 235 [N/mm^2]$$

$$f_{yd} = \frac{fyk}{rM1} = \frac{235}{1.05} = 223,80 \text{ [N/mm}^2]$$

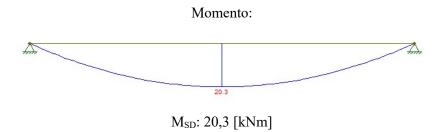

$$G_K = (G_{HEA180} + G_{GRIGLIA} + G_{PARAPETTO}) = 2,40 + 0,5 + 0,14 = 3,04 \text{ [kN/m}^2]$$

$$Q_K = 4 \left[kN/m^2 \right]$$

$$q_{K,SLU} = (1,3x3,04 + 1,5x4) = 9,95 [kN/m^2]$$


Ltrave =
$$4,24 [m]$$

Schema trave appoggiata-appoggiata


Di seguito si riportano i diagrammi delle sollecitazioni:

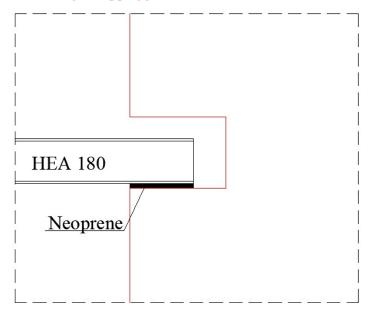
T_{SD}: 20,1 [kN]

Dal calcolo delle sollecitazioni si evince che in appoggio il T_{SD} vale 20,1 [kN], pertanto confrontando questa reazione con la reazione della muratura si ha:

Resistenza caratteristica a compressione minima della muratura esistente $f_{kMURATURA} = 1,4$ [N/mm2] (Tabella C8.5.1 - Circolare 2019)

Considerando questo valore caratteristico diviso per il coefficiente di sicurezza della muratura e per il FC determinato dal livello di conoscenza della muratura esistente si ha:

$$f_d = ((1,4/3)/1,35) = 0,346 [N/mm2]$$


La forza di reazione della muratura risulta essere pari a:

$$R_{MURATURA} = f_d \times A_{IMPRONTA} = 0.346 \times 63000 = 21777,77 \text{ [N]} = 21,77 \text{ [kN]}$$

 $R_{\text{MURATURA}} < T_{\text{SD}}$

La verifica risulta soddisfatta

Dettaglio appoggio trave-muratura esistente

