

COMUNE DI NAPOLI Area Ambiente SERVIZIO IGIENE DELLA CITTA'

R.U.P. Ing. Simona Materazzo D.E.C. Ing. Michela Vicidomini

Progetto per la costruzione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est(Ponticelli) - CUP B67H17000290007

PROGETTO DEFINITIVO

R.T.P. PROGETTAZIONE

Studio T.En. Studio Associato di Ingeg di Teneggi e Marast

Ing. S.Teneggi

MANDANTI:

Ing. C. Ferone Ing. G.M. Esposito Arch. F.S. Visone Ing. M.L. Ferone

ARETHUSA S.R.L.

SG STUDIO ASSOCIATO Ing. G. Spaggiari

STUDIO ALFA S.p.A. Dott. Ing. E. Davolio

DI GEOLOGIA Geol. D. Pingitore

Ing. F. Chiatto

TITOLO:

STUDIO DI IMPATTO AMBIENTALE (SIA)

ALLEGATO 6 - Valutazione previsionale Impatto acustico e relativi allegati

SIA 009

Data	Emissione	Redatto	Verificato	Approvato	S
Dicembre 2020	Revisione a seguito della Richiesta di Integrazioni nel merito del 13/08/2020	VM	ST	ST]
Giugno 2021	Chiarimenti a seguito della CdS del 01.06.2021	VM	ST	ST	
					l
					1

SCALA:

ELABORATO:

SOMMARIO

1	PRE	MESSA	2
2	Des	crizione delle modifiche degli impianti dell'attività oggetto di studio	3
3	Des	crizione dell'area oggetto di Studio	13
	3.1	Inquadramento da P.Z.A. (Piano di Zonizzazione Acustica Comunale)	15
4	Nor	mativa di riferimento	17
5	Limi	ti di riferimento	18
6	Cara	atterizzazione Acustica	19
	6.1	Strumentazione di misura	19
	6.2	Localizzazione spaziale delle misure	19
	6.3	Modalità di misura	20
	6.4	Risultati delle misure	20
7	Prev	risione di Impatto Acustico	22
	7.1	Software previsionale utilizzato	23
	7.2	Dati di input	24
8	Risu	ltati e relativa Analisi	26
a	Con	rlusioni	21

ALLEGATI:

- Valutazione di impatto acustico, redatta nel Gennaio 2020;
- Certificati di taratura;
- Grafici prove fonometriche;
- Tavola dei ricettori;
- Tavole DTM DBM;
- Tavole valutazione impatto acustico (integrazione Scenario punto zero e Scenari di esercizio diurno e notturno);
- Elenco regionale dei tecnici competenti in acustica ambientale.

1 PREMESSA

Oggetto del presente documento è la Valutazione Previsionale di Impatto Acustico per la realizzazione

dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est -

Ponticelli, così come da modifiche progettuali e richieste di integrazioni da parte dell'Agenzia Regionale

Protezione Ambiente della Campania (protocollo n. 0036077/2020 del 14/07/2020) e degli Uffici

competenti coinvolti per il rilascio del provvedimento autorizzatorio unico regionale (ex art. 27bis

D.Lgs. 152/2006).

La criticità emersa in istruttoria riguardo all'impossibilità di valutare, e conseguentemente approvare,

un impianto suddiviso in due stralci funzionali determina l'applicazione del concetto di MTD in funzione

dell'effettiva sostenibilità economica dell'iniziativa alla data di redazione del progetto, limite

economico entro il quale lo stesso deve assicurare il rispetto degli obiettivi indicati dal Comune di

Napoli in termini di mitigazione degli impatti potenzialmente attesi.

In queste condizioni si è quindi condiviso di procedere alla progettazione di un impianto in unico

stralcio che, nel rispetto della disponibilità economica già agli atti, risulti completo e funzionale per la

gestione e il trattamento di 30.000 t/anno di rifiuti organici, demandando ad un secondo momento, a

seguito del reperimento di ulteriori finanziamenti, interventi con cui incrementare la quantità trattata

alle 40.000 t/anno.

La presente valutazione ha lo scopo di stimare l'impatto acustico nei confronti dei ricettori più prossimi

all'impianto a seguito delle modifiche all'impianto e recepire la richiesta di integrazione di cui al

capoverso precedente.

Al fine di raggiungere tale obbiettivo, lo studio è stato svolto procedendo le seguenti fasi:

Analisi delle modifiche progettuali;

• Integrazione dello studio precedentemente presentato, con la valutazione di punti di

emissione posti al perimetro dell'impianto come da richieste di integrazioni da parte

dell'Agenzia Regionale Protezione Ambiente della Campania, protocollo n. 0036077/2020 del

14/07/2020.

pag. 2

2 Descrizione della nuova configurazione degli impianti e dell'attività oggetto di studio

Tutti i mezzi in ingresso vengono sottoposti al controllo della documentazione di trasporto e alla preventiva accettazione nell'area della pesa, con pesatura obbligatoria, dove si provvede anche a indicare la differente postazione di scarico a seconda che si tratti di rifiuto organico o rifiuto lignocellulosico. Si precisa che è prevista una linea di incolonnamento nella zona immediatamente successiva la pesa, così da non aggravare il traffico esterno.

FASI DI LAVORAZIONE: RICEZIONE E PRETRATTAMENTO RIFIUTO LIGNOCELLULOSICO

Le operazioni in ingresso all'edificio sono regolate dalla presenza di un portone, normalmente chiuso, he si apre solo quando viene rilevata la presenza di un automezzo pronto allo scarico del materiale. L'automezzo entra in retromarcia nell'edificio, dove è presente un'adeguata area di sosta in grado di ospitare il mezzo; in questo modo il portone, del tipo ad impacchettamento rapido, crea subito dopo l'ingresso del mezzo la condizione di confinamento del locale e la riduzione di qualsiasi emissione in atmosfera.

I materiali lignocellulosici sono stoccati nell'apposita area di conferimento e movimentati poi alla bisogna con polipo/pala meccanica per il pretrattamento di triturazione e il successivo utilizzo nella fase di miscelazione del digestato prima del trattamento aerobico. Normalmente il materiale verrà triturato giornalmente, così da evitare la formazione di cumuli addensati nell'area di stoccaggio, con materiale cippato e poi stoccato all'interno dell'area di miscelazione per trattamento aerobico su una superficie di circa 50 m², corrispondente ad una quantità di circa 16 tonnellate1 . Il materiale triturato verrà poi caricato con pala meccanica per essere conferito, in opportuna quantità determinata in funzione della miscela scelta dal gestore, alla fase di miscelazione del digestato per l'alimentazione delle biocelle. Il dato sul massimo stoccaggio, a cui vanno aggiunte le 16 tonnellate di cui si prevede la triturazione giornaliera, va inteso proprio nel rispetto della definizione, quindi non tanto come dato costante ma come valore massimo da considerare per il dimensionamento dell'impianto nella condizione più gravosa, non auspicata dal gestore ma ragionevolmente possibile.

RICEZIONE RIFIUTI ORGANICI (FORSU)

Le operazioni di conferimento del rifiuto sono gestite attraverso una "zona filtro" intesa come netta separazione tra l'ambiente interno al fabbricato e l'aria esterna, dove il mezzo staziona in attesa della corretta configurazione dei varchi. Imboccando la viabilità di impianto, i mezzi raggiungono il prospetto est dell'edificio di ricezione e selezione dove sono presenti portoni a impacchettamento rapido la cui apertura è regolata, in funzione dello stato delle postazioni, con un impianto semaforico. La logica di apertura dei due portoni che regolano l'accesso alla zona filtro e il successivo scarico dei rifiuti è molto semplice: prima si apre il portone di accesso (portone esterno), il mezzo entra in retromarcia e si posiziona in prossimità del portone in corrispondenza della fossa di scarico (portone interno); solo ad avvenuta chiusura del portone esterno si apre il portone interno, così da permettere al mezzo di arretrare fino alla postazione di scarico, sopraelevata di circa 1,5 m rispetto alla sottostante fossa. Ultimato lo scarico dei rifiuti la sequenza si ripete in modo inverso: il mezzo si posiziona all'interno della zona filtro, attende la chiusura del portone interno e la successiva apertura del portone esterno per poi allontanarsi dall'impianto. In questo modo le aree di scarico e stoccaggio della FORSU sono sempre isolate dall'esterno. L'operazione di scarico è sempre presidiata e sorvegliata dal personale di gestione che verifica l'eventuale presenza di materiali non conformi. 1 per il dimensionamento dei cumuli nel seguito si adotterà, tranne differente indicazione, una altezza media del cumulo di 1,50 metri. L'impianto è dimensionato per ricevere un quantitativo annuo di 30.000 tonnellate/anno di FORSU con operazioni che prevedono, di norma, la pulizia della fossa al termine del turno giornaliero, così da rimuovere da questa tutti i rifiuti organici conferiti. E' evidente che l'afflusso medio giornaliero risentirà in termini marginali delle fluttuazioni che, rilevate dal gestore nel range 90-225 t/giorno, caratterizzano la quantità giornalmente raccolta di questi specifici rifiuti, fortemente condizionata dalle differenti abitudini di vita e della disponibilità di operatori tra giorni feriali e festivi. In queste condizioni l'impianto viene dimensionato per un valore medio di 97 tonnellate/giorno, con minimo di 90 tonnellate/giorno.

PRETRATTAMENTO RIFIUTI ORGANICI (FORSU)

Il rifiuto presente nella fossa viene movimentato con una pala meccanica e caricato sulla tramoggia di alimentazione della sezione di selezione e pretrattamento, operazione poi effettuata con sole

apparecchiature meccaniche. I rifiuti vengono quindi dapprima passati su un trituratore lento con funzione di aprisacco, allo scopo di poter successivamente deferrizzare nella loro totalità i rifiuti conferiti, e in seguito raccolti da un nastro sottostante la camera di triturazione e inviati a un'operazione di vagliatura e pulizia meccanica. Come anticipato durante il trasporto i rifiuti vengono sottoposti a deferrizzazione in quanto è possibile ritrovare, all'interno del flusso, piccoli oggetti di materiale ferroso (dadi, chiodi, forchette, coltelli, ecc.) mescolati tra essi, da eliminare onde evitare che possano diventare depositi all'interno del digestore anaerobico. Il deferrizzatore preleva detti corpi ferrosi e li deposita, mediante scivolo in lamiera di acciaio, all'interno di un contenitore dedicato, anch'esso in acciaio. Successivamente i rifiuti vengono scaricati in un vaglio a dischi fisso: il sottovaglio, rappresentato prevalentemente delle componenti organiche putrescibili dei rifiuti, viene prelevato tramite utilizzo di pala dal relativo stoccaggio e trasferito nella linea di caricamento dei fermentatori. Il sopravaglio, rappresentato prevalentemente dalle frazioni estranee della FORSU, viene stoccato nell'apposito stoccaggio temporaneo in cassoni dedicati e destinati alla relativa filiera. Il separatore opera anche a secco con buona efficienza e riduzione delle plastiche presenti nel flusso, con percentuale di rimozione nell'ordine del 95-98%. Al termine delle operazioni meccaniche il rifiuto organico selezionato viene conferito in una vasca di alimentazione della DA (VA1), da cui verrà estratta in modo continuo per la costante alimentazione del processo. La vasca di alimentazione è dotata di nastri trasportatori/coclee e assolve anche alla funzione di elemento di laminazione/polmonazione del processo, raccordo tra le operazioni temporalmente discontinue effettuate dagli operatori nell'edificio di ricezione e selezione e la costante alimentazione del digestore. Durante l'ultimo turno giornaliero la vasca viene caricata con una quantità minima tale da assicurare l'alimentazione fino alla mattina successiva, ovvero all'inizio del primo turno di lavoro e l'arrivo dei mezzi di conferimento, mentre prima della pausa domenicale la vasca deve contenere il quantitativo che garantisca un flusso non inferiore al 50% di quello medio di progetto per almeno 44 ore (da sabato alle 12:00 al lunedì alle 8:00). In vista di ciò, la vasca di alimentazione viene cautelativamente dimensionata per garantire una capacità di alimentazione non inferiore a due giorni, quindi con una capacità di stoccaggio di almeno 304 m³, con rifiuto caratterizzato da un potere calorifico non superiore a 7 MJ/kg e umidità superiore al 70%. Rispetto alla normale gestione dell'impianto, si rileva che la procedura operativa prevede che la fossa sia svuotata al termine del turno di lavoro pomeridiano/serale, con massimo accumulo ammesso nell'ordine di non più di 100 tonnellate nella giornata di massimo conferimento atteso.

DIGESTIONE ANAEROBICA, GENERAZIONE DI BIOGAS E PRODUZIONE DI DIGESTATO

La digestione anaerobica è da ricondursi ad un trattamento in anaerobiosi ad opera della flora batterica presente nell'ingestato (rifiuto sottoposto a trattamento). Come anticipato, la tecnologia di DA scelta per la presente proposta progettuale è del tipo dry con funzionamento plug-in flow, con reattore (digestore) di tipo cilindrico in cui il flusso a pistone prosegue orizzontalmente. Il moto di avanzamento del materiale trattato è assistito da miscelatori a lenta rotazione posti internamente al reattore che omogeneizzano il materiale trattato, lo degasano e risospendono il materiale inerte grossolano. La frazione organica pretrattata, proveniente dalla linea di pretrattamento, confluisce quindi nella vasca di alimentazione, dimensionata per lo stoccaggio di materiale pretrattato occorrente per almeno 2 giorni di alimentazione del digestore. La linea di alimentazione sarà preferibilmente realizzata mediante sistema di pompaggio, con sistema di coclee o altro sistema equivalente indicato dal costruttore dell'impianto, per evitare la dispersione di odori e l'eventuale caduta di materiale organico sulle platee esterne al capannone. Come detto il sistema di digestione anaerobica proposto è di tipo a secco, con funzionamento in continuo, flusso a pistone e operante in regime termofilo (temperatura media >50°C). Dopo aver sottoposto i rifiuti alla depurazione dai materiali non decomponibili, con scarti ipotizzati pari al 15% del rifiuto in ingresso, la percentuale di sostanza secca nella vasca di alimentazione varia dal 20% al 30%, mentre all'interno del digestore tale percentuale scende tra il 18% ed il 28%, normalmente con valori più elevati in testa al digestore e più bassi in coda. La temperatura di funzionamento del processo può variare tra i 35 e i 55 °C. Il funzionamento del digestore è automatico ed è gestito direttamente dal programma in cabina di comando. Nell'eventualità che il rifiuto conferito all'impianto si presenti secco è prevista la possibilità di intervenire umidificando la massa mediante l'aggiunta di acqua industriale e/o percolato raccolto c/o l'impianto. Affinché il processo di digestione anaerobica proceda regolarmente con la corretta efficienza in termini di produzione di biogas, il digestore viene mantenuto nell'intervallo di temperatura ottimale per la popolazione dei batteri metanigeni, in quanto hanno un più lento metabolismo e necessitano di più attenzioni. A tale scopo il digestore è dotato di un efficiente sistema di riscaldamento della massa in fermentazione, costituito da elementi tubolari disposti verticalmente all'interno della camera di fermentazione, a diretto contatto con la massa, attraversati da acqua calda alimentata dal circuito idraulico connesso al sistema di riscaldamento (caldaia a gasolio). Questi scambiatori verticali sono resi

più fitti in prossimità dell'ingresso del rifiuto fresco che in genere, soprattutto nel periodo invernale, è caratterizzato da temperature più basse, e si diradano man mano che si procede verso il sistema di estrazione. Il digestato è scaricato tramite un sistema di tubazioni alimentato da una robusta pompa a pistone o altro sistema equivalente, a seconda del fornitore individuato, in grado di trasferire il materiale alle successive sezioni di trattamento.

TRATTAMENTO AEROBICO

Si è già riferito del fatto che lo scarto derivante dalla digestione anaerobica deve essere sottoposto ad una fase di trattamento aerobico, operata in una sezione detta di compostaggio. Lo scopo è quello di trasformare la sostanza organica contenuta nel digestato in composti umosimili, simulando artificialmente il processo di umificazione che avviene spontaneamente nel suolo a carico di scarti vegetali e animali. Se l'umificazione si inserisce nell'ecosistema naturale come anello di chiusura del ciclo del carbonio, nello stesso spazio in cui il carbonio è stato fissato per via fotosintetica (lettiere di boschi e foreste), il compostaggio rappresenta, in un sistema antropizzato, un processo industriale che recupera materia ed energia da biomasse agro-industriali o rifiuti organici, così da consentire la chiusura del ciclo del carbonio in una gestione integrata dei rifiuti che si pone l'obiettivo della restituzione di materia a suoli agricoli. In natura la trasformazione della sostanza organica viene controllata da una serie di meccanismi che fanno parte di un complesso sistema in equilibrio, moderatamente condizionato dalla variabile tempo. Tale affermazione risulta meno attinente quando si considera un processo di compostaggio, in cui la tipologia e la velocità di trasformazione della sostanza organica devono essere controllati adottando una serie di accorgimenti tecnologici quali l'areazione forzata, il rivoltamento e la bagnatura dei cumuli. Gli obiettivi principali di un processo di compostaggio industriale sono individuati in:

- decomporre la sostanza organica potenzialmente fermentescibile dei rifiuti in un prodotto stabile;
- eradicare dai rifiuti organici i microrganismi patogeni per l'uomo, gli animali e le piante;
- ridurre o eliminare i fattori responsabili di effetti fitotossici; ω trasformare la sostanza organica in composti umosimili.

Anche se il compost è un fertilizzante organico ricco in composti umosimili, il compostaggio non è un processo specificamente finalizzato alla produzione di humus. Esso ha, infatti, come obiettivo principale quello di produrre sostanza organica parzialmente organizzata, stabile e priva di effetti fitotossici. Se condotto correttamente e operato su rifiuti privi di contaminanti (vetro, plastica, metalli) che ne limitano il riutilizzo in natura, la sostanza organica si degrada velocemente e, una volta incorporata nel suolo, continua a trasformarsi diventando infine humus. Una volta preparata la miscela si provvede a disporla nelle biocelle confinate dove ha inizio la fase attiva, anche definita di "biossidazione accelerata", in cui sono più intensi e rapidi i processi degradativi a carico delle componenti organiche maggiormente fermentescibili. In questa fase, che si svolge tipicamente a temperature di almeno 55 °C, si palesa la necessità di drenaggio dell'eccesso di calore dal sistema e si ha una elevata richiesta di ossigeno necessario alle reazioni biochimiche. La biossidazione aerobica in biocella presenta numerosi vantaggi, primi tra tutti i seguenti:

- le reazioni biochimiche sono più rapide;
- si evita l'instaurarsi di meccanismi anaerobici, causa di emissioni maleodoranti e nocive;
- l'energia sviluppata provoca un aumento della temperatura della biomassa, provocandone la sterilizzazione e l'essiccazione;
- le prime fasi di biossidazione, tipicamente le più odorigene, sono condotte in reattori confinati e controllati nei quali è più facile controllare, captare e inviare a trattamento le emissioni.

In funzione della degradazione già subita nella fase di digestione anaerobica si prevede una durata della fase di biossidazione e igienizzazione stimata complessivamente in 38 giorni, periodo di trattamento che garantisce l'acquisizione dei seguenti obiettivi:

- stabilizzazione del materiale trattato;
- abbattimento delle emissioni maleodoranti tipiche di una matrice organica putrescibile;
- riduzione in volume e peso della stessa e la disattivazione degli organismi patogeni (igienizzazione).

Per l'insufflazione delle biocelle verrà utilizzata prevalentemente l'aria proveniente dall'aspirazione dei locali di ricezione e pretrattamento, ottimizzando in questo modo il bilancio delle arie ed energetico dell'impianto. L'irrigazione del percolato dei tunnel aerobici verrà eseguita mediante ugelli di irrorazione a pioggia, disposti sul soffitto delle biocelle, i quali riceveranno il liquido dalla vasca del percolato attraverso una serie di tubazioni sostenute da un sistema di pompe dedicate; tali linee sono

dotate di filtri in linea per evitare l'intasamento degli ugelli. Qualora necessario, dopo la fase di igienizzazione, sarà inoltre possibile irrigare con acqua. Come già anticipato in premessa la configurazione impiantistica si caratterizza per una prima parte di fermentazione accelerata condotta in celle chiuse (biocelle) ed una successiva fase di maturazione aerobica su platea areata: nel primo caso il trattamento del materiale derivante dalla miscelazione tra digestato e rifiuto lignocellulosico triturato viene effettuato in un locale confinato, con cumulo statico che viene insufflato con ventilatori dedicati ed umidificato con tubazioni dedicate, mentre nella seconda fase il cumulo è formato in un locale molto più ampio, in cui macchine operatrici provvedono al rivoltamento ed alla movimentazione del materiale, così da mantenere una adeguata porosità e permettere la omogenea diffusione dell'area all'interno della massa. Viene predisposta un'area di stoccaggio a monte della fase di miscelazione, con una superficie pari a circa 50 m2 e in cui si prevede la possibilità di stoccare una quantità pari a 16 t di sovvallo. La flessibilità del layout proposto consente peraltro di evitare la raffinazione intermedia mediante realizzazione di bypass ed effettuare, come in alcuni casi preferito dal gestore, la doppia vagliatura (40 e 10 mm) dopo la maturazione. Il materiale, mantenuto in cumulo, completa così la fase di maturazione, con stazionamento e conseguente tempo di permanenza sufficiente ad ottenere un IRD coerente con la normativa sugli ammendanti compostati misti. La fase di maturazione viene quindi gestita in cumuli statici con rivoltamenti periodici, funzionali a garantire l'aerazione della massa in finissaggio, effettuati mediante pala meccanica. Nel caso specifico, vista la notevole flessibilità e modularità richiesta dalla Committenza, si è optato per una soluzione che configura anche la sezione di maturazione con celle confinate del tutto simili a quelle concepite per la fase di biossidazione, così che l'impianto possa, nel futuro, gestire vantaggiosamente anche variazioni quali-quantitative dei flussi in ingresso. La soluzione adottata garantisce peraltro un miglior controllo della qualità del singolo lotto di compost prodotto e la riduzione dei residui rischi di incendio. Al termine della fase di maturazione, il materiale compostato viene trasferito a un sistema di vagliatura finale e di raffinazione. La vagliatura avviene in un'area chiusa, a sud del capannone di maturazione. Il compost maturo e grezzo viene separato meccanicamente e la frazione passante al vaglio (< 10 mm) è considerata compost raffinato di qualità; il sovvallo (> 10 mm), dopo aver subito la separazione di eventuali plastiche residue mediante separatore aeraulico, viene inviato alla sezione di preparazione della miscela di alimentazione al digestore. Al fine di evitare la dispersione di polveri entro il capannone, al di sopra del vaglio è installata una cappa di aspirazione collegata al sistema di trattamento delle arie esauste generale, previo pretrattamento mediante filtro a maniche, analogamente a quanto previsto

per la raffinazione intermedia. Lo stoccaggio temporaneo del compost maturo avviene in una porzione della tettoia posta sul lato sud del comparto, a cui si aggiunge lo spazio adibito a movimentazione mezzi. La tettoria si estenda su una area di circa 1900 m² di cui 1400 adibiti a stoccaggio.

CAPTAZIONE, STOCCAGGIO DEL BIOGAS E SUCCESSIVO TRATTAMENTO DI RAFFINAZIONE IN BIOMETANO

Il biogas grezzo prodotto all'interno del digestore è saturo di vapore acqueo, con contenuto medio di metano pari a circa il 60%, e con restante parte del gas costituita principalmente da anidride carbonica, piccole quantità di azoto e ossigeno molecolari e la presenza di tracce di idrogeno solforato, ammoniaca e composti organici volatili (terpeni e silossani). Per trasformare il biogas in biometano e renderlo di qualità equivalente al normale gas naturale prodotto da fonte fossile è necessario sottoporlo a una serie di pretrattamenti (desolforazione, deumidificazione ecc.) e a un processo di rimozione del maggior contaminante (l'anidride carbonica) chiamato upgrading. Le apparecchiature che compongono l'impianto di upgrading sono generalmente collocate all'interno dell'area tecnologica (ma ad adeguata distanza dall'impianto) su isole tecnologiche dimensionate in funzione della portata da trattare e delle prescrizioni impartite dal gestore della rete nazionale. Attualmente sono disponibili sul mercato un certo numero di tecnologie per la fase di upgrading del biogas; è difficile fare un paragone universalmente valido tra queste, in quanto molti parametri essenziali dipendono fortemente dal contesto locale. Anche in funzione delle scelte costruttive già relazionate, con un impianto concepito in modo flessibile e modulare al fine di accettare eventuali e future variazioni qualiquantitative dei rifiuti in ingresso, la tecnologia più opportuna da adottare è quella detta "a membrane", soluzione che consente di rispettare i seguenti obiettivi:

- elevato recupero di CH4;
- conseguente minor presenza di CH4 nel gas scartato (off-gas), con beneficio sia in termini ambientali che di massimizzazione del recupero; ω consumi energetici comparabili con la maggior parte delle altre tecnologie;
- utilizzo di reagenti limitato alla fase di pretrattamento; ω risparmio della risorsa idrica;
- risparmio di energia termica, che può invece essere recuperata dalla compressione del biogas.

IMPIANTI AUSILIARI

La descrizione degli impianti e delle reti ausiliari da prevedere per la funzionalità e il corretto funzionamento dell'impianto è riportata nelle relazioni specialistiche che corredano questa relazione generale, così che nei capitoli successivi sono elencate solo le principali caratteristiche di alcune di queste infrastrutture. Si rimanda in particolar modo alle seguenti relazioni specialistiche: Relazione tecnica impianto di aspirazione e trattamento arie esauste e sistema aria compressa; Relazione idrologica idraulica

GENERATORE DI CALORE DI INTEGRAZIONE E RISERVA

È prevista l'installazione di un generatore di calore ausiliario. per assicurare la produzione di energia termica. In particolare, si prevede l'installazione di un generatore di calore a gasolio, del tipo tradizionale in acciaio a tre giri di fumo. La potenza dei generatori sarà definita in fase di progetto esecutivo; indicativamente si prevede un generatore da 580 kW di potenzialità termica nominale. Il bruciatore sarà del tipo ad aria soffiata e modulante in continuo con ampio campo di lavoro, al fine di adattarsi alla richiesta di carico termico dell'utenza. Tutti i bruciatori saranno del tipo "low NOx", con contenimento delle emissioni al di sotto dei limiti normativi. Il generatore sarà alimentato da una propria linea di alimentazione del gasolio e sarà dotato di propri dispositivi di sicurezza, quali valvole di intercettazione del combustibile, valvole di sicurezza, termostati di regolazione e sicurezza, pressostato di sicurezza, sistema di espansione, pompa di circolazione anticondensa. L'attivazione del generatore avverrà secondo una sequenza prefissata in funzione dal carico termico da servire, in modo da massimizzare la resa del sistema di produzione. Tutta la regolazione sarà gestita da un sistema di supervisione dedicato. È prevista l'installazione di un gruppo di pompaggio idoneo a far circolare l'acqua nei circuiti di riscaldamento del fermentatore, che sarà a portata variabile in funzione della richiesta termica del digestore. Il gruppo di pompaggio sarà alimentato tramite convertitori di frequenza (inverter) per regolare la velocità di rotazione delle pompe e quindi le curve caratteristiche portata/prevalenza.

Le varie sezioni ed aree di trattamento su elencate possono essere così raggruppate:

Edificio	Dimensioni e caratteristiche *	Sezioni/aree di pertinenza
Ricezione e selezione	Struttura in cemento armato prefabbricato, con dimensioni planimetriche di 83m x 57m	4
Digestione anaerobica	Struttura in cemento armato prefabbricato, con dimensioni planimetriche totali di 36m x 10m	7
Trattamento aerobico (biotunnel)	Struttura in cemento armato prefabbricato, con dimensioni planimetriche massime di 74m x 37m, per un'area totale di 2200 m²	9
Maturazione	Struttura in cemento armato prefabbricato, con dimensioni planimetriche di 74m x 31m	11
Vagliatura/raffinazione	Struttura in cemento armato prefabbricato, con dimensioni planimetriche di 51m x 18m	12
Stoccaggio prodotto finito	Struttura in cemento armato prefabbricato, con dimensioni planimetriche di 71m x 24m	13
Biofiltro	Struttura in cemento armato prefabbricato, con dimensioni planimetriche di 44m x 45m	16

3 Descrizione dell'area oggetto di Studio

Il sito in oggetto è ubicato nel territorio di Ponticelli, quartiere della del Comune di Napoli, ovvero localizzato nella zona orientale dello stesso Comune, a circa 1km dal confine con il territorio comunale di Casoria ed 1.5 km dal confine con Il territorio del comune di Volla.

L'area in esame ricade all'interno del Sito di Interesse Nazionale SIN.

Ai fini del censimento le aree interne al perimetro del SIN sono state suddivise nelle seguenti tipologie: Aree private: Comprendono principalmente aree industriali/artigianali, attive o dimesse, che possono essere, o per le attività pregresse o per quelle in atto, potenziali fonti di inquinamento diretto, ma anche aree sulle quali attualmente vengono svolte attività del terziario, ma che possono essere oggetto di inquinamento indotto ovvero possono aver cambiato funzione senza aver subito alcun intervento di bonifica

Aree pubbliche: Comprendono prevalentemente aree il cui utilizzo attuale non è in genere fonte di inquinamento diretto ma che, come nel caso precedente, possono essere oggetto di inquinamento indotto o possono aver cambiato destinazione d'uso senza aver subito alcun intervento di bonifica.

Aree residenziali ad usi sociali ed agricoli: Comprendono aree che non sono al momento oggetto di attività inquinanti, ma che possono però essere oggetto di inquinamento indotto o possono aver cambiato destinazione d'uso senza aver subito alcun intervento di bonifica

La viabilità è in condizioni potenzialmente eccellenti, con rampe presenti a Via De Roberto (SS 162/Asse Corso Malta Acerra), costruite ma non attivate, che immettono direttamente nel sito. Il fronte Nord dell'area è definito da Via de Roberto e dalla SS 162, mentre il fronte EST dall'Autostrada del Sole.

La presenza dello svincolo completo fra asse di penetrazione dell'Autostrada del Sole e l'asse Corso Malta - Acerra / SS 162 proprio al confine NW del sito, unitamente al collegamento che tali due importanti assi viari hanno con la tangenziale, tanto all'imbocco lato Capodichino quanto con Corso Malta, rendono il sito sicuramente ottimale per viabilità e ben posizionato rispetto all'intero Comune di Napoli.

Si riporta di seguito lo stralcio aerofotogrammetrico dell'area in disamina, la tavola dei ricettori considerati nel presente studio e la tavola del posizionamento dei punti di valutazione dei valori assoluti di emissione sonora:

Fig. 3.1 - Stralcio ortofotogrammetrico dell'area in disamina

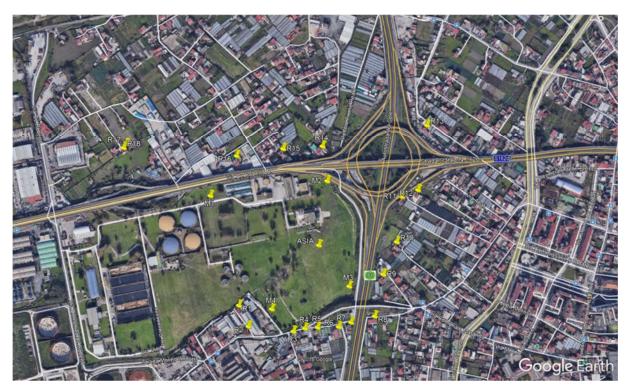


Fig. 3.2 - Stralcio ortofotogrammetrico dei ricettori in disamina

Fig. 3.3 - Stralcio ortofotogrammetrico dei ricettori in disamina

3.1 Inquadramento da P.Z.A. (Piano di Zonizzazione Acustica Comunale)

Per quanto concerne la zonizzazione acustica comunale, come mostrato nella seguente figura, l'area in esame ricade parzialmente in Zona II, Zona IV e parzialmente in Zona di transizione VI-II, i cui criteri di definizione sono riportati nel seguito.

- classe II, aree destinate ad uso prevalentemente residenziale; rientrano in questa classe le aree interessate prevalentemente da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianali.
- classe IV aree di intensa attività umana: rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali, le aree con limitata presenza di piccole industrie.
- classe VI, aree industriali, interessate esclusivamente da attività industriali e prive di insediamenti abitativi.

A seguire si Riporta stralcio del P.Z.A. adottato dal Comune di Napoli:

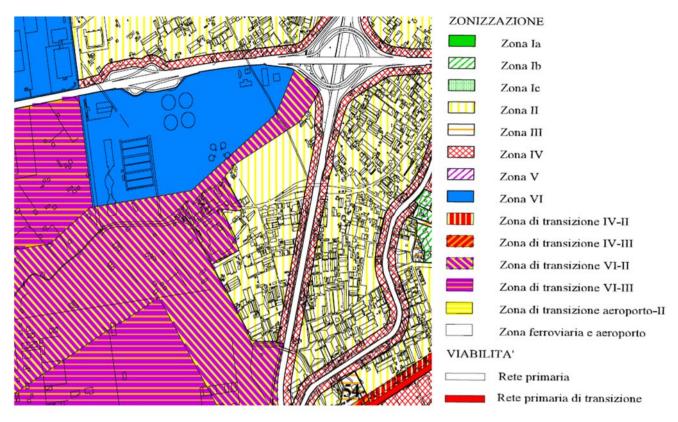


Fig. 3.1.1 - Stralcio ortofotogrammetrico dei ricettori in disamina

4 Normativa di riferimento

Nell'ambito dello studio, oggetto del presente documento, si è fatto riferimento alla normativa di seguito elencata:

- Legge 26 ottobre 1995 n. 447, "Legge quadro sull'inquinamento acustico", pubblicata nel Supplemento ordinario alla Gazzetta Ufficiale, n. 125 del 30 ottobre 1995.
- Decreto del Presidente del Consiglio dei Ministri 14 novembre 1997, "Determinazione dei valori limite delle sorgenti sonore", pubblicato nella Gazzetta Ufficiale n. 280 del 1 dicembre 1997;
- Decreto del Ministero dell'Ambiente 16 marzo 1998, "Tecniche di rilevamento e di misurazione dell'inquinamento acustico", pubblicato nella Gazzetta Ufficiale n. 76 del 1 aprile 1998.

5 Limiti di riferimento

Come anticipato al paragrafo 3.1, il Comune di Napoli risulta provvisto del Piano di Zonizzazione Acustica comunale, pertanto si farà riferimento alla classificazione riportata nel d.p.c.m. 14 novembre 1997, art. 2 (tabella B), art. 3 (tabella C) e art. 4, di seguito riportata:

Tabella B: valori limite di emissione - Leq in dB(A) (art. 2)

classi di destinazione d'uso del territorio	tempi di riferim	ento
	diurno (06.00-22.00)	Notturno (22.00-06.00)
I aree particolarmente protette	45	35
II aree prevalentemente residenziali	50	40
III aree di tipo misto	55	45
IV aree di intensa attività umana	60	50
V aree prevalentemente industriali	65	55
VI aree esclusivamente industriali	65	65

Tabella C: valori limite assoluti di immissione - Leq in dB (A) (art.3)

classi di destinazione d'uso del territorio	•						
	diurno (06.00-22.00)	notturno (22.00-06.00)					
I aree particolarmente protette	50	40					
II aree prevalentemente	55	45					
residenziali							
III aree di tipo misto	60	50					
IV aree di intensa attività umana	65	55					
V aree prevalentemente industriali	70	60					
VI aree esclusivamente industriali	70	70					

Valori differenziali di Immissione 5 dB per il periodo Diurno e 3 dB per il Periodo Notturno.

6 Caratterizzazione Acustica

Nel caso oggetto del presente studio la caratterizzazione acustica è stata finalizzata a:

a) Stabilire la situazione attuale di rumorosità dell'area sottoposta ad indagine e per la determinazione dei livelli sonori residui;

Pertanto è stata eseguita una campagna di misure fonometriche in punti la cui localizzazione è riportata al paragrafo 6.2.

6.1 Strumentazione di misura

Le misurazioni sono state eseguite con un fonometro Larson&Davis moello 831 (n. di serie 0001600), conforme alle classe 1 di precisione secondo la norma IEC 61672 ed alle norme EN 60651/1994 (eqv. CEI 651), EN 60804/1994 (eqv. CEI 804) EN 61260/96 (eqv. CEI 1260). Il sistema è dotato di un microfono da ½" per campo libero, modello 377B02 (n. di serie 127153) conforme alle norme EN 61094-1/1994, EN 61094-2/1993, EN 61094-3/1995, EN 61094-4/1995. La strumentazione è stata controllata prima e dopo il ciclo di misura, secondo la norma IEC 60942 (1997), con un calibratore Norsonic modello Nor 1251 (n°serie 34452) di classe 1, conforme alle norme CEI 29-4, al fine di verificare che lo scostamento tra la calibrazione iniziale e finale non si discostasse da 0.5 dB(A) così come previsto dal D.M. 16 marzo 1998 all"art.2 comma 3. In allegato sono riportati i certificati di taratura della strumentazione utilizzata.

6.2 Localizzazione spaziale delle misure

Le misure tese a caratterizzare il clima acustico sono state eseguite, sia in orario diurno (06:00 - 22:00) che notturno (06:00 - 22:00) in 4 punti, M1, M2, M3, M4 riportati nella seguente planimetria;

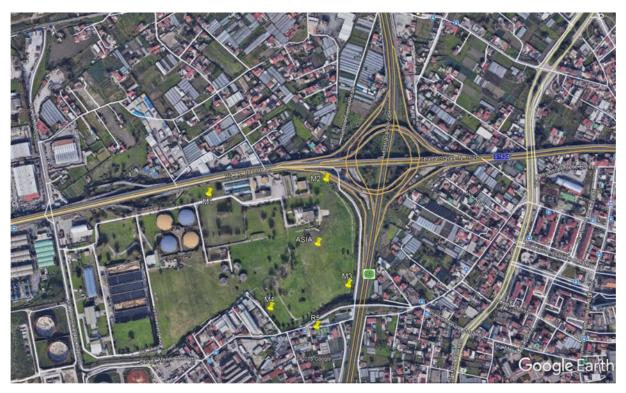


Fig. 6.2 – Localizzazione punti di misura

6.3 Modalità di misura

Nell'esecuzione delle misure, il microfono è stato collocato su un apposito cavalletto ad un'altezza di circa 1,5m dal piano di calpestio e ad una distanza di circa 3m dall'operatore. Tutte le misure sono state eseguite conformemente al decreto 16 marzo 1998.

6.4 Risultati delle misure

Le misure condotte con la strumentazione e le modalità descritte in precedenza hanno condotto ai risultati riportati nella seguente tabella:

M1 DIURNO												
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))						
59.4	70.3	62.5	61.4	58.5	56	55.3						
M2 DIURNO												

LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.1	62.1	59.5	58.7	55.7	53.8	53.4
M3 DIURNO						
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
57.6	75.8	63.2	60.3	54.1	52.6	52.3
M4 DIURNO						
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
53.3	62.7	59.2	58.4	56	53.6	53.1
M1 NOTTURNO)					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.8	65.4	60.2	59.4	56.2	52.3	51.1
M2 NOTTURNO)					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.2	62.7	59	58.3	55.7	53.2	52.5
M3 NOTTURNO)					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
55.4	69.8	58.9	57.2	54.2	52.4	52
M4 NOTTURNO)					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
53.3	67.2	55.1	53.8	52.4	51.5	51.3

Si rimanda all'elaborato "Grafici Prove Fonometriche" per gli approfondimenti.

7 Previsione di Impatto Acustico

La valutazione del livello di rumore immesso nell'area circostante da una sorgente particolare può essere effettuata mediante l'ausilio di specifici codici di calcolo relativi alla propagazione del suono in ambienti aperti. La metodologia adottata da suddetti codici per la stima del livello di rumore in un dato punto tiene conto del fatto che la propagazione del suono segue leggi fisiche in base alle quali è possibile valutare l'attenuazione della pressione sonora o dell'intensità acustica a varie distanze dalla sorgente stessa.

A tale proposito, le norme ISO 9613-1/93 e 9613-2/96 stabiliscono una metodologia che consente, con una certa approssimazione, di valutare tale attenuazione tenendo conto dei principali parametri che influenzano la propagazione: divergenza delle onde acustiche, presenza del suolo, dell'atmosfera, di barriere ed altri fenomeni.

Esistono diversi modi di schematizzare la generazione e la propagazione del suono:

a) si può considerare che la potenza sonora emessa sia concentrata in sorgenti puntiformi, in genere omnidirezionali. In tal caso, per ciascuna sorgente la potenza sonora si distribuisce su una sfera o una semisfera; nella propagazione del suono si ha quindi una riduzione dell'intensità acustica proporzionale all'inverso del quadrato della distanza. Il livello di pressione sonora L_P prodotto a distanza r da una data sorgente di potenza sonora L_W, nel caso di propagazione sferica, è dato da:

$$L_p = L_W + DI - 20 \log(r) - 11$$
 (propagazione sferica)

Il termine 20 log(r) rappresenta l'attenuazione dovuta alla divergenza sferica delle onde, mentre DI esprime in dB (rispetto ad una direzione di riferimento) il fattore di direttività Q della sorgente. Questo termine può essere trascurato quando gli effetti della direzionalità della sorgente vengono mascherati dalla presenza di fenomeni di diffusione prodotti da oggetti e superfici presenti nel campo sonoro. Nel caso di propagazione semisferica, come si verifica quando una sorgente sonora è appoggiata su un piano riflettente, si ha:

$$L_p = L_W + DI - 20 \log(r) - 8$$
 (propagazione semisferica)

b) si può considerare che la potenza sonora emessa sia concentrata in una o più sorgenti lineari, corrispondenti alla mezzeria delle aree considerate, qualora lo sviluppo della sorgente sia maggiore in lunghezza rispetto a quello in larghezza. In tal caso, la potenza sonora si distribuisce su

una superficie cilindrica o semicilindrica; la riduzione dell'intensità acustica è proporzionale all'inverso della distanza:

 $L_p = L_W - 10 \log(r) - 8$ (propagazione cilindrica)

 $L_p = L_W - 10 \log(r) - 5$ (propagazione semicilindrica)

In realtà il livello di pressione sonora è influenzato anche dalle condizioni ambientali e dalla direttività della sorgente per cui le equazioni precedenti assumono una forma più complessa. Ad esempio, con riferimento a sorgenti puntiformi (propagazione sferica), si ottiene:

 $L_p = L_W + DI - 20 \log(r) - A - 11$

Dove A, l'attenuazione causata dalle condizioni ambientali, è dovuta a diversi contributi:

A1 = assorbimento del mezzo di propagazione;

A2 = presenza di pioggia, neve o nebbia;

A3 = presenza di gradienti di temperatura nel mezzo e/o di turbolenza (vento);

A4 = assorbimento dovuto alle caratteristiche del terreno e alla eventuale presenza di vegetazione;

A5 = presenza di barriere naturali o artificiali.

7.1 Software previsionale utilizzato

Nel caso in cui si debba studiare l'impatto acustico di una o più sorgenti, è possibile impiegare per la stima della propagazione del rumore in ambiente esterno noti programmi di calcolo, che impiegano i modelli previsionali citati in precedenza.

Il software impiegato nel caso presente è "IMMI" vers. 2020 della casa tedesca Wölfel, sviluppato in ambiente operativo "Windows" e dedicato specificamente all'acustica previsionale. Esso permette la modellizzazione acustica in accordo con le principali linee-guida esistenti in Europa e nel mondo, tra cui appunto la ISO 9613 e la DIN 18005 utilizzate nel presente elaborato.

Alcune delle caratteristiche salienti del software sono:

- Input dei dati mediante mouse e tastiera, scanner di supporti cartografici, importazione diretta di file DXF o immagine;
- Verifica immediata dei dati introdotti mediante tabulati relativi ai dati geometrici e acustici già finalizzati alla stampa di report;
- Presentazione dell'output in forma tabulare e grafica, attraverso mappe colorate bidimensionali e tridimensionali personalizzabili;

- Possibilità di inclusione ed esclusione di gruppi di sorgenti o di ostacoli;
- Possibilità di modellizzare le emissioni sonore di edifici industriali e non (attualmente è implementata a tale scopo la norma tedesca VDI 2571);
- Calcolo in frequenza secondo la norma ISO 9613-2.

Il software è stato adottato da autorevoli enti, fra cui l'ANPA (ora APAT) e numerose ARPA.

7.2 Dati di input

Il modello previsionale oggetto della presente valutazione, è stato condotto ai fini della valutazione di:

1) Esercizio dell'Impianto;

Per l'analisi dell'esercizio dell'impianto sono state considerate le seguenti sorgenti sonore:

CODICE ID.	N° UTENZE INSTALLATE	UBICAZIONE	RUMOROSITA'	INTERNA / ESTERNA
VT1a + VT9b	18 Ventilatori	Insufflazione celle di biossidazione accelerata	94 dB/A cadauno	Interno fabbricato
VT10 + VT18	9 Ventilatori	In suffazione celle di maturazione	94 dB/A cadauno	Interno fabbricato
FAM 1	1 Filtro a maniche	Filtro a maniche	81 dB/A	Estemo
VT19	1 Ventilatore	Ventilatore filtro a maniche	88 dB/A	Estemo
VB01 + VB03	3 Ventilatori	Insufflazione aria nel plenum biofiltro	92 dB/A cadauno	Estemo
SC01 + SC03	3 Scrubber	Torri di lavaggio aria in entrata a biofiltro	80 dB/A cadauno	Esterne
VA	2 Ventilatori	Ventilatore assiale interni al fabbricato	89 dB/A cadauno	Interno fabbricato
COMP1	1 Compressore	Compressore di alimentazione circuito aria compressa	69 dB/A	Interno fabbricato
PALA	3	Pala meccanica movimentazione rifiuti	106 dB/A cadauna	Interna/esterna
MUL	1	Muletto	101 dB/A	Interno/esterno
POL	1	Polpo movimentazione rifiuti	109 dB/A	Interno fabbricato
TR-01 + TR-02	2	Trituratore	86 dB/A cadauno	Interno fabbricato
MS	1	Miscelatore	86 dB/A	Interno fabbricato
MIX 01+02	2	Mixer digestore	83 dB/A cadauno	Esterno
P 01+02	2	Pompa digestore	83 dB/A cadauna	Esterne
TRAM-01+TRAM-05	5	Tramoggia di carico	74 dB/A cadauna	Interno fabbricato
VG-01 + VG-02	2	Vaglio	80 dB/A cadauno	Interno fabbricato
SO-01 + SO-03	3	Separatore ottico	95 dB/A cadauno	Interno fabbricato
DEF	1	Deferrizzatore	70 dB/A	Interno fabbricato
SA	1	Separatore aeraulico	85 dB/A	Interno fabbricato
GE-01 + GE-03	3	Gruppi elettrogeni	105 dB/A cadauno	Estemo (insonorizzato)
C1 + C16	16	Coclee pretrattamento e alimentazione digestore	75 dB/A cadauna	Interna/esterna
NS	n	Nastri tra sportatori	66 dB/A cadauno	Interno fabbricato
UP	1	Stazione Up-grading	103 dB/A	Esterna
CALD	1	Caldaia	89 dB/A cadauno	Esterna
TE	1	Torcia di emergenza	94 dB/A cadauno	Esterna
CLIM	1	Unità esterna dimatizzatore palazzina uffici	50 dB/A	Esterna

Per le sorgenti interne ai fini del calcolo è stato considerato un potere Fonoisolante Rw di una struttura in calcestruzzo armato pari a 54 dB.

Mentre come presidio di mitigazione una barriera, tipo Louvres della Bosco Italia, a contorno dell'area UP.

8 Risultati e relativa Analisi

I risultati delle simulazioni sono stati confrontati, per i ricettori prossimi all'area, con i limiti di immissione previsti dal d.p.c.m 14 novembre 1997 per le classi acustiche V, IV e II. Per la determinazione dei valori residui relativi ai ricettori da R1 a R5, è stata utilizzata la misura M4; Per i ricettori da R6 a R10 la misura M3. Per i ricettori da R11 a R15, la misura M2; Per i ricettori da R16 a R18, la misura M1.

Verifica dei limiti assoluti di immissione:

Per la verifica del rumore emesso ed immesso nell'ambiente esterno da specifiche sorgenti disturbanti, bisogna comparare la misura ad un tempo di integrazione pari all'intero periodo di riferimento (TR), che nel caso in esame è pari a 16 ore, ovvero 960 minuti, (6.00÷22.00) corrispondente al periodo di riferimento diurno.

In pratica il rumore immesso ed emesso dalle sorgenti in disamina nell'ambiente esterno, va diluito sull'intero tempo di riferimento, in relazione al loro tempo di funzionamento.

Il valore del livello di rumore ambientale ridotto all'intero periodo di riferimento TR è dato dalla seguente relazione:

$$L_{Aeq,TR} = \frac{10\log \left[\frac{1}{TR} \sum_{i=1}^{n} (T_0)_i 10^{0.1L_{Aeq,(T_0)_i}}\right]}{[dB(A)]}$$

dove T₀ è il tempo di osservazione, ovvero il tempo complessivo di funzionamento della sorgente sonora specifica, ovvero il cantiere. Considerato che il ciclo lavorativo durante il periodo di riferimento diurno si articola su 8 ore durante la fase di cantiere e 12 ore in fase di esercizio, mentre nel tempo di riferimento notturno funzionano solo gli impianti si ha:

Per la fase di esercizio dell'impianto sono stati analizzati due scenari, uno relativo al tempo di riferimento diurno ed uno relativo al tempo di riferimento notturno. La scelta è stata dettata dalla condizione che il ciclo di lavoro si articola su 12 ore nel periodo di riferimento diurno, prevedendo anche operazioni sul piazzale, mentre durante il periodo di riferimento notturno sono in funzione solo gli impianti.

Pertanto si ha:

- scenario Impianto in Esercizio Diurno;
- scenario Impianto in Esercizio Notturno.

	Scenario Impianto in Esercizio Diurno												
RICETTORE	IMMISSIONE	LIMITE IMMISSIONE DIURNO	EMISSIONE	LIMITE EMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO					
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)					
R1 1 PT N/O	32,7				53,3	53,3	0,0						
R1 1 PS1N/O	37,5				53,3	53,4	0,1						
R2 1 PT N/O	25,1	70			53,3	53,3	0,0						
R2 1 PS1N/O	26,7				53,3	53,3	0,0						
R2 1 PS2N/O	28,4				53,3	53,3	0,0						
R3 1 PT Nord	38,2				53,3	53,4	0,1						
R3 1 PS1Nord	39,9				53,3	53,5	0,2						
R3 1 PS2Nord	42,0				53,3	53,6	0,3						
R4 1 PT Nord	42,3				53,3	53,6	0,3						
R4 1 PS1Nord	43,4	55			53,3	53,7	0,4						
R5 1 PT Nord	42,7				53,3	53,7	0,4						
R5 1 PS1Nord	44,8				53,3	53,9	0,6	5					
R6 1 PT Nord	41,1				55,4	55,6	0,2						
R6 1 PS1Nord	42,7				55,4	55,6	0,2						
R7 1 PT Ovest	41,0				55,4	55,6	0,2						
R7 1 PS1Ovest	41,6	65			55,4	55,6	0,2						
R8 1 PT Ovest	39,7	03			55,4	55,5	0,1						
R8 1 PS1Ovest	40,7				55,4	55,5	0,1						
R9 1 PT N/O	43,5				55,4	55,7	0,3						
R10 1 PT N/O	41,3	55			55,4	55,6	0,2						
R10 1 PS1N/O	45,0				55,4	55,8	0,4						
R11 1 PT N/O	36,5	65			56,2	56,2	0,0						
R11 1 PS1N/O	38,4				56,2	56,3	0,1						

	9	Scenari	o Impi	anto in	Eserc	izio Di	urno	
RICETTORE	IMMISSIONE	LIMITE IMMISSIONE DIURNO	EMISSIONE	LIMITE EMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R12 1 PT N/O	31,7				56,2	56,2	0,0	
R13 1 PT S/O	31,9				56,2	56,2	0,0	
R14 1 PT S/E	33,6				56,2	56,2	0,0	
R14 1 PS1S/E	35,1				56,2	56,2	0,0	
R15 1 PT S/E	33,1				56,2	56,2	0,0	
R15 1 PS1S/E	35,0				56,2	56,2	0,0	
R16 1 PS1S/E	31,6				56,8	56,8	0,0	
R16 1 PS2S/E	32,5				56,8	56,8	0,0	
R16* 1 PT Est	30,7				56,8	56,8	0,0	
R17 1 PT S/E	24,6				56,8	56,8	0,0	
R18 1 PT S/E	24,6	55			56,8	56,8	0,0	
R18 1 PS1S/E	25,1				56,8	56,8	0,0	
EMISSION E 1			39,9	50				
EMISSION E 2			40,6	30				
EMISSION E 3			46,8					
EMISSION E 4			40,8	60				
EMISSION E 5			40,9					
EMISSION E 6			35,8	50				
EMISSION E 7			35,0	60				
EMISSION E 8			49,9					
EMISSION E 9			40,6	50				
EMISSION E 10			37,7	50				
EMISSION E 11			40,3					

	Scenario Impianto in Esercizio Notturno											
RICETTORE	IMMISSIONE	LIMITE IMMISSIONE NOTTURNO	EMISSIONE	LIMITE EMISSIONE NOTTURNO	RESIDUO NOTTURNO	AMBIENTALE NOTTURNO	DIFFERENZIALE NOTTURNO	LIMITE DIFFERENZIALE NOTTURNO				
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)				
R1 1 PT N/O	31,7				53,3	53,3	0,0					
R1 1 PS1N/O	37,2				53,3	53,4	0,1					
R2 1 PT N/O R2 1	21,6	60			53,3	53,3	0,0					
PS1N/O R2 1	24,2				53,3	53,3	0,0					
PS2N/O R3 1 PT	26,4				53,3	53,3	0,0					
Nord R3 1	37,4				53,3	53,4	0,1					
PS1Nord R3 1	39,3				53,3	53,5	0,2					
PS2Nord R4 1 PT	41,7				53,3	53,6	0,3					
Nord	41,8				53,3	53,6	0,3					
R4 1 PS1Nord	43,0	45			53,3	53,7	0,4					
R5 1 PT Nord	40,8				53,3	53,5	0,2					
R5 1 PS1Nord	42,7				53,3	53,7	0,4					
R6 1 PT Nord	38,1				55,4	55,5	0,1					
R6 1 PS1Nord	38,9				55,4	55,5	0,1	3				
R7 1 PT Ovest	37,2				55,4	55,5	0,1					
R7 1 PS1Ovest	37,6	55			55,4	55,5	0,1					
R8 1 PT Ovest	35,4				55,4	55,4	0,0					
R8 1 PS1Ovest	35,8				55,4	55,4	0,0					
R9 1 PT N/O	39,0				55,4	55,5	0,1					
R10 1 PT N/O	33,9	45			55,4	55,4	0,0					
R10 1 PS1N/O	45,0				55,4	55,8	0,4					
R11 1 PT N/O	31,5				56,2	56,2	0,0					
R11 1 PS1N/O	34,1				56,2	56,2	0,0					
R12 1 PT N/O	28,7	55			56,2	56,2	0,0					
R13 1 PT S/O	27,0	33			56,2	56,2	0,0					
R14 1 PT S/E	28,5				56,2	56,2	0,0					
R14 1 PS1S/E	29,0				56,2	56,2	0,0					

	Scenario Impianto in Esercizio Notturno										
RICETTORE	IMMISSIONE	LIMITE IMMISSIONE NOTTURNO	EMISSIONE	LIMITE EMISSIONE NOTTURNO	RESIDUO NOTTURNO	AMBIENTALE NOTTURNO	DIFFERENZIALE NOTTURNO	LIMITE DIFFERENZIALE NOTTURNO			
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)			
R15 1 PT S/E	28,8				56,2	56,2	0,0				
R15 1 PS1S/E	31,2				56,2	56,2	0,0				
R16 1 PS1S/E	30,4				56,8	56,8	0,0				
R16 1 PS2S/E	31,6				56,8	56,8	0,0				
R16* 1 PT Est	29,2				56,8	56,8	0,0				
R17 1 PT S/E	23,9				56,8	56,8	0,0				
R18 1 PT S/E	24,0	45			56,8	56,8	0,0				
R18 1 PS1S/E	24,5				56,8	56,8	0,0				
EMISSIONE 1			39,3	40							
EMISSIONE 2			39,1	40							
EMISSIONE 3			39,6								
EMISSIONE 4			34,0	50							
EMISSIONE 5			35,5								
EMISSIONE 6			30,5	40							
EMISSIONE 7			27,0	50							
EMISSIONE 8			34,2								
EMISSIONE 9			35,2								
EMISSIONE 10			36,8	40							
EMISSIONE 11			39,5								

Dove: da R1 a R18 vengono indicati i ricettori più prossimi all'area in disamina (riportati in ortofoto al paragrafo 3) e Dove PT = Piano Terra, PS1 = Piano 1, PS2 = Piano 2......PSN = Piano ennesimo.

La mappa tematica delle simulazioni viene riportata nell'elaborato "Tavole Valutazione di Impatto Acustico".

Dalle simulazioni effettuate con i presidi di mitigazione acustica di cui al paragrafo 7.2, emerge il rispetto dei limiti definiti dalla normativa vigente.

9 Conclusioni

La Valutazione Previsionale di Impatto Acustico per la realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est – Ponticelli, condotta con le modalità descritte in relazione alla fase di esercizio dell'impianto adottando i presidi di mitigazione di cui al paragrafo 7.2, non emergono previsionalmente superamenti dei limiti.

ALLEGATI

Ambiente, Tutela del Territorio e del Mare Via Speranzella n. 80 80132 Napoli

R.U.P. Ing. Simona Materazzo D.E.C. Ing. Michela Vicidomini

Progetto per la costruzione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est(Ponticelli) - CUP B67H17000290007

PROGETTO DEFINITIVO

R.T.P. PROGETTAZIONE

MANDATARIA:

Studio T.En.
Studio Associato di Ingegneria
di Teneggi e Merastoni
Ing. S.Teneggi

MANDANTI:

Ing. C. Ferone
Ing. G.M. Esposito
Arch. F.S. Visone
Ing. M.L. Ferone

SG STUDIO ASSOCIATO Ing. G. Spaggiari

Prov. MODENA

STUDIO ALFA S.p.A. Dott. Ing. E. Davolio

Determ Replants in Improved CESARE FERONE CESARE FERONE CONTROLL SELECTION OF THE PROPERTY OF

GEOLOG STUDIO DI GEOLOGIA Geol. D. Pingitore

CHIATIO Ferdinando

Ing. F. Chlatto

TITOLO:

STUDIO DI IMPATTO AMBIENTALE (SIA)

ALLEGATO 6 - VALUTAZIONE PREVISIONALE IMPATTO ACUSTICO E RELATIVI ALLEGATI

Revisione	Data	Emissione	Redatto	Verificato	Approvato
00	Settembre 2019	Prima emissione	VM	ST	ST
01	Gennaio 2020	Prima emissione sottoscritta da Proponente	VM	ST	ST

ELABORATO:

SIA 009

SCALA:

1

Realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

SOMMARIO

1	PRE	MESSA	2
2	DES	CRIZIONE DELL'ATTIVITÀ OGGETTO DI STUDIO	3
3	DES	CRIZIONE DELL'AREA OGGETTO DI STUDIO	6
	3.1	Inquadramento da P.Z.A. (Piano di Zonizzazione Acustica Comunale)	8
4	NOF	RMATIVA DI RIFERIMENTO	9
5	LIM	ITI DI RIFERIMENTO	10
6	CAR	ATTERIZZAZIONE ACUSTICA	11
	6.1	Strumentazione di misura	11
	6.2	Localizzazione spaziale delle misure	11
	6.3	Modalità di misura	
	6.4	Risultati delle misure	12
7	PRE	VISIONE DI IMPATTO ACUSTICO	14
	7.1	Software previsionale utilizzato	15
	7.2	Dati di input	16
8	RISU	JLTATI E RELATIVA ANALISI	20
9	CON	ICIUSIONI	51

Realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

1 PREMESSA

Oggetto del presente documento è la Valutazione Previsionale di Impatto Acustico per la realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est – Ponticelli.

La presente valutazione ha lo scopo di stimare l'impatto acustico nei confronti dei ricettori più prossimi all'impianto.

Al fine di raggiungere tale obbiettivo, lo studio è stato svolto procedendo le seguenti fasi:

- Analisi dell'area;
- Rilievi fonometrici puntuali in ambiente esterno per la caratterizzazione del clima acustico;
- Realizzazione del DTM (digital terrain model) e del DBM (digital building model) sulla base della cartografia fornita;
- Stima dell'impatto ambientale, utilizzando un modello di calcolo, che simula la propagazione sonora in ambiente esterno mediante il software IMMI;
- Identificazione delle immissioni generate ai ricettori e verifica del rispetto della normativa vigente.

2 DESCRIZIONE DELL'ATTIVITÀ OGGETTO DI STUDIO

L'impianto di compostaggio viene utilizzato per il trattamento della frazione organica della raccolta differenziata dei rifiuti e degli scarti ligno-cellulosici. Nella fattispecie analizzata il processo produttivo è articolato nelle seguenti fasi:

- 1) Fasi di lavorazione: rifiuto lignocellulosico (edificio di ricezione e selezione)

 Le operazioni in ingresso all'edificio sono regolate dalla presenza di un portone, normalmente chiuso, che si apre solo quando viene rilevata la presenza di un automezzo pronto allo scarico del materiale. I materiali lignocellulosici sono stoccati nell'apposita area di conferimento e movimentati poi alla bisogna con polipo/pala meccanica per il pretrattamento di triturazione e il successivo utilizzo nella fase di miscelazione del digestato prima del trattamento aerobico. Il materiale triturato verrà poi caricato con pala meccanica per essere conferito
- 2) Fasi di lavorazione: rifiuti organici (FORSU)
 Prima si apre il portone di accesso (portone esterno), il mezzo entra in retromarcia e si posiziona in prossimità del portone in corrispondenza della fossa di scarico (portone interno); solo ad avvenuta chiusura del portone esterno si apre il portone interno, così da permettere al mezzo di arretrare fino alla postazione di scarico, sopraelevata di circa 1,5 m rispetto alla sottostante fossa. Ultimato lo scarico dei rifiuti la sequenza si ripete in modo inverso: il mezzo si posiziona all'interno della zona filtro, attende la chiusura del portone interno e la successiva apertura del portone esterno per poi allontanarsi dall'impianto.
- 3) Pretrattamento: triturazione lenta, deferrizzazione, vagliatura Il rifiuto presente nella fossa viene movimentato con una pala meccanica e caricato sulla tramoggia di alimentazione della sezione di selezione e pre-trattamento, operazione poi effettuata con sole apparecchiature meccaniche. I rifiuti vengono quindi dapprima passati su un trituratore lento con funzione di aprisacco, raccolti da un nastro sottostante la camera di triturazione e inviati a un'operazione di vagliatura e pulizia meccanica. Durante il trasporto i rifiuti vengono sottoposti a deferrizzazione in quanto è possibile ritrovare, all'interno del flusso, piccoli oggetti di materiale ferroso (dadi, chiodi, forchette, coltelli, ecc.) mescolati tra essi, da eliminare onde evitare che possano diventare depositi all'interno dei digestori anaerobici.
- 4) Digestione anaerobica, generazione di biogas e produzione di digestato Prima fase: idrolisi e acidificazione: In questa prima fase vengono ottenuti composti semplici, metabolizzabili da altri batteri nelle fasi successive

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

Nella seconda fase i prodotti di idrolisi e acidificazione vengono metabolizzati ad opera di una flora di batteri anaerobi facoltativi e sono trasformati in acido acetico, acido formico, CO2 e H2.

Terza fase: metanogenesi: La produzione di metano rappresenta la conclusione della catena trofica anaerobica. La produzione del metano avviene attraverso due differenti vie di reazioni: una via prevede la metanogenesi ad opera dei batteri idrogenotrofi, che operano l'ossidazione anaerobica dell'idrogeno, mentre la seconda via, detta acetoclastica, prevede la dismutazione anaerobica dell'acido acetico con formazione di metano e biossido di carbonio.

5) Trattamento aerobico

Si è già riferito del fatto che lo scarto derivante dalla digestione anaerobica deve essere sottoposto ad una fase di trattamento aerobico, operata in una sezione detta di compostaggio. Lo scopo è quello di trasformare la sostanza organica contenuta nel digestato in composti umosimili, simulando artificialmente il processo di umificazione che avviene spontaneamente nel suolo a carico di scarti vegetali e animali

6) Processo di compostaggio

A) Vagliatura intermedia

Terminata la fase di biossidazione accelerata, il materiale precompostato viene estratto dalle biocelle con pala gommata e inviato alla vagliatura intermedia; questa operazione permette la separazione del materiale grossolano dal compost vero e proprio che, essendo ora caratterizzato dalla mancanza di substrati velocemente biodegradabili, non necessita più dello strutturante nella quantità iniziale.

B) Maturazione

Il materiale di sottovaglio della vagliatura intermedia viene solitamente disposto in un fabbricato di ampie dimensioni, con superficie nettamente superiore a quella delle singole biocelle ma con stesso sistema di diffusione dell'aria a pavimento. Il materiale, mantenuto in cumulo, completa così la fase di maturazione, con stazionamento e conseguente tempo di permanenza sufficiente ad ottenere un IRD coerente con la normativa sugli ammendanti compostati misti.

C) Vagliatura finale del compost

Al termine della fase di maturazione, il materiale compostato viene trasferito a un sistema di vagliatura finale e di raffinazione.

La vagliatura avviene in un'area chiusa, a sud del capannone di maturazione.

7) Captazione, stoccaggio del biogas e successivo trattamento di raffinazione in biometano Il biogas grezzo prodotto all'interno dei digestori è saturo di vapore acqueo, con contenuto medio di metano compreso tra il 55% ed il 65%, e con restante parte del gas costituita principalmente da anidride carbonica, piccole quantità di azoto e ossigeno molecolari e la presenza di tracce di idrogeno solforato, ammoniaca e composti organici volatili (terpeni e silossani).

Per trasformare il biogas in biometano e renderlo di qualità equivalente al normale gas naturale prodotto da fonte fossile è necessario sottoporlo a una serie di pretrattamenti (deumidificazione, desolforazione, ecc.) e a un processo di rimozione del maggior contaminante (l'anidride carbonica) chiamato upgrading.

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto

acustico e relativi allegati

3 DESCRIZIONE DELL'AREA OGGETTO DI STUDIO

Il sito in oggetto è ubicato nel territorio di Ponticelli, quartiere della del Comune di Napoli, ovvero

localizzato nella zona orientale dello stesso Comune, a circa 1km dal confine con il territorio comunale

di Casoria ed 1.5 km dal confine con Il territorio del comune di Volla.

L'area in esame ricade all'interno del Sito di Interesse Nazionale SIN.

Ai fini del censimento le aree interne al perimetro del SIN sono state suddivise nelle seguenti tipologie:

Aree private: Comprendono principalmente aree industriali/artigianali, attive o dimesse, che possono

essere, o per le attività pregresse o per quelle in atto, potenziali fonti di inquinamento diretto, ma

anche aree sulle quali attualmente vengono svolte attività del terziario, ma che possono essere oggetto

di inquinamento indotto ovvero possono aver cambiato funzione senza aver subito alcun intervento di

bonifica.

Aree pubbliche: Comprendono prevalentemente aree il cui utilizzo attuale non è in genere fonte di

inquinamento diretto ma che, come nel caso precedente, possono essere oggetto di inquinamento

indotto o possono aver cambiato destinazione d'uso senza aver subito alcun intervento di bonifica.

Aree residenziali ad usi sociali ed agricoli: Comprendono aree che non sono al momento oggetto di

attività inquinanti, ma che possono però essere oggetto di inquinamento indotto o possono aver

cambiato destinazione d'uso senza aver subito alcun intervento di bonifica.

La viabilità è in condizioni potenzialmente eccellenti, con rampe presenti a Via De Roberto (SS 162/Asse

Corso Malta Acerra), costruite ma non attivate, che immettono direttamente nel sito. Il fronte Nord

dell'area è definito da Via de Roberto e dalla SS 162, mentre il fronte EST dall'Autostrada del Sole.

La presenza dello svincolo completo fra asse di penetrazione dell'Autostrada del Sole e l'asse Corso

Malta - Acerra / SS 162 proprio al confine NW del sito, unitamente al collegamento che tali due

importanti assi viari hanno con la tangenziale, tanto all'imbocco lato Capodichino quanto con Corso

Malta, rendono il sito sicuramente ottimale per viabilità e ben posizionato rispetto all'intero Comune

di Napoli.

Si riporta di seguito lo stralcio aerofotogrammetrico dell'area in disamina e la tavola dei ricettori

considerati nel presente studio:

pag. 6

Fig. 3.1 - Stralcio ortofotogrammetrico dell'area in disamina

Fig. 3.2 - Stralcio ortofotogrammetrico dei ricettori in disamina

3.1 Inquadramento da P.Z.A. (Piano di Zonizzazione Acustica Comunale)

Per quanto concerne la zonizzazione acustica comunale, come mostrato nella seguente figura, l'area in esame ricade parzialmente in Zona II, Zona IV e parzialmente in Zona di transizione VI-II, i cui criteri di definizione sono riportati nel seguito.

- classe II, aree destinate ad uso prevalentemente residenziale; rientrano in questa classe le aree interessate prevalentemente da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianali.
- classe IV aree di intensa attività umana: rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali, le aree con limitata presenza di piccole industrie.
- classe VI, aree industriali, interessate esclusivamente da attività industriali e prive di insediamenti abitativi.

A seguire si Riporta stralcio del P.Z.A. adottato dal Comune di Napoli:

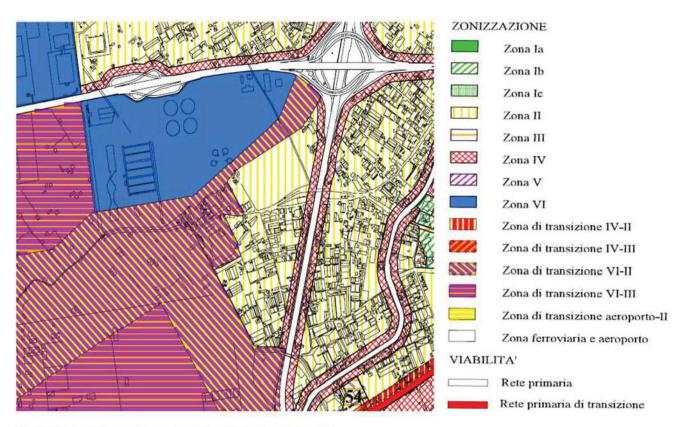


Fig. 3.1.1 - Stralcio ortofotogrammetrico dei ricettori in disamina

4 NORMATIVA DI RIFERIMENTO

Nell'ambito dello studio, oggetto del presente documento, si è fatto riferimento alla normativa di seguito elencata:

- Legge 26 ottobre 1995 n. 447, "Legge quadro sull'inquinamento acustico", pubblicata nel Supplemento ordinario alla Gazzetta Ufficiale, n. 125 del 30 ottobre 1995.
- Decreto del Presidente del Consiglio dei Ministri 14 novembre 1997, "Determinazione dei valori limite delle sorgenti sonore", pubblicato nella Gazzetta Ufficiale n. 280 del 1 dicembre 1997;
- Decreto del Ministero dell'Ambiente 16 marzo 1998, "Tecniche di rilevamento e di misurazione dell'inquinamento acustico", pubblicato nella Gazzetta Ufficiale n. 76 del 1 aprile 1998.

5 LIMITI DI RIFERIMENTO

Come anticipato al paragrafo 3.1, il Comune di Napoli risulta provvisto del Piano di Zonizzazione Acustica comunale, pertanto si farà riferimento alla classificazione riportata nel D.P.C.M. 14 novembre 1997, art. 2 (tabella B), art. 3 (tabella C) e art. 4, di seguito riportata:

Tabella B: valori limite di emissione - Leg in dB(A) (art. 2)

classi di destinazione d'uso del territorio	tempi di rife	erimento
	diurno (06.00-22.00)	Notturno (22.00-06.00)
I aree particolarmente protette	45	35
II aree prevalentemente residenziali	50	40
III aree di tipo misto	55	45
IV aree di intensa attività umana	60	50
V aree prevalentemente industriali	65	55
VI aree esclusivamente industriali	65	65

Tabella C: valori limite assoluti di immissione - Leq in dB (A) (art.3)

classi di destinazione d'uso del territorio	tempi di rife	erimento
	diurno (06.00-22.00)	notturno (22.00-06.00)
I aree particolarmente protette	50	40
II aree prevalentemente residenziali	55	45
III aree di tipo misto	60	50
IV aree di intensa attività umana	65	55
V aree prevalentemente industriali	70	60
VI aree esclusivamente industriali	70	70

Valori differenziali di Immissione 5 dB per il periodo Diurno e 3 dB per il Periodo Notturno (tranne che per la Classe VI).

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto

acustico e relativi allegati

6 CARATTERIZZAZIONE ACUSTICA

Nel caso oggetto del presente studio la caratterizzazione acustica è stata finalizzata a:

a) Stabilire la situazione attuale di rumorosità dell'area sottoposta ad indagine e per la

determinazione dei livelli sonori residui;

Pertanto è stata eseguita una campagna di misure fonometriche in punti la cui localizzazione è

riportata al paragrafo 6.2.

6.1 Strumentazione di misura

Le misurazioni sono state eseguite con un fonometro Larson&Davis moello 831 (n. di serie 0001600), conforme alle classe 1 di precisione secondo la norma IEC 61672 ed alle norme EN 60651/1994 (eqv. CEI 651), EN 60804/1994 (eqv. CEI 804) EN 61260/96 (eqv. CEI 1260). Il sistema è dotato di un microfono da ½" per campo libero, modello 377802 (n. di serie 127153) conforme alle norme EN 61094-1/1994, EN 61094-2/1993, EN 61094-3/1995, EN 61094-4/1995. La strumentazione è stata controllata prima e dopo il ciclo di misura, secondo la norma IEC 60942 (1997), con un calibratore Norsonic modello Nor 1251 (n°serie 34452) di classe 1, conforme alle norme CEI 29-4, al fine di verificare che lo scostamento tra la calibrazione iniziale e finale non si discostasse da 0.5 dB(A) cosi come previsto dal D.M. 16 marzo 1998 all"art.2 comma 3. In allegato sono riportati i certificati di taratura della strumentazione utilizzata.

6.2 Localizzazione spaziale delle misure

Le misure tese a caratterizzare il clima acustico sono state eseguite, sia in orario diurno (06:00 – 22:00) che notturno (06:00 – 22:00) in 4 punti, M1, M2, M3, M4 riportati nella seguente planimetria;

Fig. 6.2 - Localizzazione punti di misura

6.3 Modalità di misura

Nell'esecuzione delle misure, il microfono è stato collocato su un apposito cavalletto ad un'altezza di circa 1,5m dal piano di calpestio e ad una distanza di circa 3m dall'operatore. Tutte le misure sono state eseguite conformemente al decreto 16 marzo 1998.

6.4 Risultati delle misure

Le misure condotte con la strumentazione e le modalità descritte in precedenza hanno condotto ai risultati riportati nella seguente tabella:

M1 DIURNO						
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
59.4	70.3	62.5	61.4	58.5	56	55.3
M2 DIURNO		<u>.</u>		-		
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.1	62.1	59.5	58.7	55.7	53.8	53.4
M3 DIURNO		L				
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))

57.6	75.8	63.2	60.3	54.1	52.6	52.3
M4 DIURNO	di			-		- i
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
53.3	62.7	59.2	58.4	56	53.6	53.1
M1 NOTTURNO	0					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.8	65.4	60.2	59.4	56.2	52.3	51.1
M2 NOTTURN	0					
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
56.2	62.7	59	58.3	55.7	53.2	52.5
M3 NOTTURNO	0					i,
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
55.4	69.8	58.9	57.2	54.2	52.4	52
M4 NOTTURNO	0					<u> </u>
LA _{eq} (dB(A))	LA ₁ (dB(A))	LA ₅ (dB(A))	LA ₁₀ (dB(A))	LA ₅₀ (dB(A))	LA ₉₀ (dB(A))	LA ₉₅ (dB(A))
53.3	67.2	55.1	53.8	52.4	51.5	51.3

Si rimanda all'elaborato "Grafici Prove Fonometriche" per gli approfondimenti.

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto

acustico e relativi allegati

7 PREVISIONE DI IMPATTO ACUSTICO

La valutazione del livello di rumore immesso nell'area circostante da una sorgente particolare può essere effettuata mediante l'ausilio di specifici codici di calcolo relativi alla propagazione del suono in ambienti aperti. La metodologia adottata da suddetti codici per la stima del livello di rumore in un dato punto tiene conto del fatto che la propagazione del suono segue leggi fisiche in base alle quali è possibile valutare l'attenuazione della pressione sonora o dell'intensità acustica a varie distanze dalla sorgente stessa.

A tale proposito, le norme ISO 9613-1/93 e 9613-2/96 stabiliscono una metodologia che consente, con una certa approssimazione, di valutare tale attenuazione tenendo conto dei principali parametri che influenzano la propagazione: divergenza delle onde acustiche, presenza del suolo, dell'atmosfera, di barriere ed altri fenomeni.

Esistono diversi modi di schematizzare la generazione e la propagazione del suono:

a) si può considerare che la potenza sonora emessa sia concentrata in sorgenti puntiformi, in genere omnidirezionali. In tal caso, per ciascuna sorgente la potenza sonora si distribuisce su una sfera o una semisfera; nella propagazione del suono si ha quindi una riduzione dell'intensità acustica proporzionale all'inverso del quadrato della distanza. Il livello di pressione sonora L_P prodotto a distanza r da una data sorgente di potenza sonora L_W, nel caso di propagazione sferica, è dato da:

$$L_p = L_W + DI - 20 \log(r) - 11$$
 (propagazione sferica)

Il termine 20 log(r) rappresenta l'attenuazione dovuta alla divergenza sferica delle onde, mentre DI esprime in dB (rispetto ad una direzione di riferimento) il fattore di direttività Q della sorgente. Questo termine può essere trascurato quando gli effetti della direzionalità della sorgente vengono mascherati dalla presenza di fenomeni di diffusione prodotti da oggetti e superfici presenti nel campo sonoro. Nel caso di propagazione semisferica, come si verifica quando una sorgente sonora è appoggiata su un piano riflettente, si ha:

$$L_p = L_w + DI - 20 \log(r) - 8$$
 (propagazione semisferica)

b) si può considerare che la potenza sonora emessa sia concentrata in una o più sorgenti lineari, corrispondenti alla mezzeria delle aree considerate, qualora lo sviluppo della sorgente sia maggiore in lunghezza rispetto a quello in larghezza. In tal caso, la potenza sonora si distribuisce su una superficie cilindrica o semicilindrica; la riduzione dell'intensità acustica è proporzionale all'inverso della distanza:

$$L_p = L_W - 10 \log(r) - 8$$
 (propagazione cilindrica)

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

 $L_p = L_W - 10 \log(r) - 5$ (propagazione semicilindrica)

In realtà il livello di pressione sonora è influenzato anche dalle condizioni ambientali e dalla direttività della sorgente per cui le equazioni precedenti assumono una forma più complessa. Ad esempio, con

riferimento a sorgenti puntiformi (propagazione sferica), si ottiene:

 $L_p = L_W + DI - 20 \log(r) - A - 11$

Dove A, l'attenuazione causata dalle condizioni ambientali, è dovuta a diversi contributi:

A1 = assorbimento del mezzo di propagazione;

A2 = presenza di pioggia, neve o nebbia;

A3 = presenza di gradienti di temperatura nel mezzo e/o di turbolenza (vento);

A4 = assorbimento dovuto alle caratteristiche del terreno e alla eventuale presenza di vegetazione;

A5 = presenza di barriere naturali o artificiali.

7.1 Software previsionale utilizzato

Nel caso in cui si debba studiare l'impatto acustico di una o più sorgenti, è possibile impiegare per la stima della propagazione del rumore in ambiente esterno noti programmi di calcolo, che impiegano i modelli previsionali citati in precedenza.

Il software impiegato nel caso presente è "IMMI" vers. 2018 della casa tedesca Wölfel, sviluppato in ambiente operativo "Windows" e dedicato specificamente all'acustica previsionale. Esso permette la modellizzazione acustica in accordo con le principali linee-guida esistenti in Europa e nel mondo, tra cui appunto la ISO 9613 e la DIN 18005 utilizzate nel presente elaborato.

Alcune delle caratteristiche salienti del software sono:

- Input dei dati mediante mouse e tastiera, scanner di supporti cartografici, importazione diretta di file DXF o immagine;
- Verifica immediata dei dati introdotti mediante tabulati relativi ai dati geometrici e acustici già finalizzati alla stampa di report;
- Presentazione dell'output in forma tabulare e grafica, attraverso mappe colorate bidimensionali e tridimensionali personalizzabili;
- Possibilità di inclusione ed esclusione di gruppi di sorgenti o di ostacoli;
- Possibilità di modellizzare le emissioni sonore di edifici industriali e non (attualmente è implementata a tale scopo la norma tedesca VDI 2571);
- Calcolo in frequenza secondo la norma ISO 9613-2.

Il software è stato adottato da autorevoli enti, fra cui l'ANPA (ora APAT) e numerose ARPA.

7.2 Dati di input

Il modello previsionale oggetto della presente valutazione, è stato condotto ai fini della valutazione di:

- 1) Impatti da Cantiere (realizzazione e dismissione impianto);
- 2) Esercizio dell'Impianto;
- 3) Analisi dei flussi di traffico da e verso impianto, sia in fase di cantiere che di esercizio.

Per gli impatti da cantiere sono state analizzate le seguenti fasi con l'impiego dei seguenti macchinari:

Fase	Descrizione	autocarri	escavatori	terna gommata	pala gommata	pala cingolata	rullo compattatore	grader	cistema con acqua	autocarro con gru e/o	gru sollevatrice	trivella	vibrofinitrice	autopompa per getti	generatore diesel
2.1	Allestimento del cantiere	2	2		1		1	1	1						
2.2	Opere di rimodellamento morfologico del sito	5	3		2	3	3		2						
2.3	Preparazione dei sottofondi stradali e delle aree di impianto	2	2		2	3	3	1	3						
2.4	Opere di approntamento delle strutture ipogee e delle fondazioni	3	3		ļ. j	1	į.					2		3	1
2.5	Installazione in opera di prefabbricati strutturali									6	6				3
2.6	Realizzazione della struttura portante dei tunnels di trattamento aerobico									2	2			2	1
2.7	Installazione impiantistica digestione anaerobica	1	1												
2.8	Realizzazione delle reti interne e della pavimentazione industriale interna e di prima prossimità degli edifici prefabbricati	2	1	3			2		1					3	1
2.9	Realizzazione dei pavimenti tecnologici dei biofiltri e delle zone di carico dei materiali	2	1	2										1	1
2.1	Realizzazione della pavimentazione industriale esterna	2	1	2										3	1
2.11	Costruzione delle strutture metalliche per il sostegno delle tubazioni di convogliamento dell'aria di processo e posa dei collettori									6	2				2
2.12	Costruzione del fabbricato servizi sul lato Est									3	2				1
2.13	Costruzione della viabilità generale e di quella interna all'area tecnologica, compreso blocco guardiania e sorveglianza	3	1	2			4	3	1				3		
2.14	Completamento delle reti e dei servizi	2	1	4											
2.15	Interventi a verde e ricomposizione ambientale	1		1	i i	i i				2	2				1
2.17	Installazione impiantistica elettrica e elettromeccanica									8	2				
2.18	Opere di finitura	1	1	2									2		1

A cui si aggiunge la fase di cantiere di dismissione dell'impianto con i seguenti macchinari:

Macchinari	Numero
Autocarri	5
Escavatori	3
Pala Gommata	2
Pala Cingolata	3
Rullo Compattatore	3
Gru Sollevatrice	2

I dati relativi alla potenza sonora delle macchine illustrate nella tabella precedente sono i seguenti:

Mezzo	Lw dB(A)
Autocarro (media potenza)	98
Escavatore (media potenza)	102
Terna gommata	100
Pala gommata	110
Pala cingolata	110
Rullo compattatore	112
Grader	85
Cisterna con acqua	90
Autocarro con gru	95
Gru sollevatrice	87
Trivella per pali	85
Vibrofinitrice	111
Autopompa per getti	102
Generatore elettrico diesel	96

I livelli di potenza sonora delle attrezzature di cantiere e dei mezzi d'opera impiegati, sono stati reperiti da banche dati riconosciute dalla Commissione Prevenzione infortuni di cui all'art. 393 del 547/55 (CTP Padova, CTP Torino)

Per l'analisi dell'esercizio dell'impianto sono state considerate le seguenti sorgenti sonore:

CODICE ID.	N° UTENZE INSTALLATE	UBICAZIONE	RUMOROSITA'	INTERNA / ESTERNA
VT1a+VT9b	18 Ventilatori	Insufflazione celle di biossidazione accelerata	94 dB/A cadauno	Interno fabbricato
VT10 + VT18	9 Ventilatori	In suffazione celle di maturazione	94 dB/A cadauno	Interno fabbricato
FAM 1	1 Filtro a maniche	Filtro a mariche	81 dB/A	Esterno
VT19	1 Ventilatore	Ventilatore filtro a maniche	88 dB/A	Esterno
VB01 + VB03	3 Ventilatori	Insufflazione aria nel plenum biofiltro	92 dB/A cadauno	Estemo
SC01 + SC03	3 Scrubber	Torri di lavaggio aria in entrata a biofiltro	80 dB/A cadauno	Esterne
VA	2 Ventilatori	Ventilatore assiale interni al fabbricato	89 dB/A cadauno	Interno fabbricato
COMP1	1 Compressore	Compressore di alimentazione circuito aria compressa	69 dB/A	Interno fabbricato
PALA	3	Pala meccanica movimentazione rifluti	106 dB/A cadauna	Interna/esterna
MUL	1	Muletto	101 dB/A	Interno/esterno
POL	1	Palpo movimentazione rifiuti	109 dB/A	Interno fabbricato
TR-01 + TR-02	2	Trituratore	86 dB/A cadauno	Interno fabbricato
MS	1	Miscelatore	86 dB/A	Interno fabbricato
MEX 01+02	2	Mixer digestore	83 dB/A cadauno	Esterno
P 01+02	2	Pompa digestore	83 dB/A cadauna	Esterne
TRAM-01+TRAM-05	5	Tramoggia di carico	74 dB/A cadauna	Interno fabbricato
VG-01 + VG-02	2	Vaglio	80 dB/A cadauno	Interno fabbricato
SO-01 + SO-03	3	Separatore otico	95 dB/A cadauno	Interno fabbricato
DEF	1	Deferrizzatore	70 dB/A	Interno fabbricato
SA	1	Separatore aeraulico	85 dB/A	Interno fabbricato
GE-01 + GE-03	3	Gruppi elettrogeni	105 dB/A cadauno	Estemo (insonorizzato
C1 + C16	16	Codee pretrattamento e alimentazione digestore	75 dB/A cadauna	Interna/esterna
NS	n	Nastri trasportatori	66 dB/A cadauno	Interno fabbricato
UP	1	Stazione Up-grading	103 dB/A	Esterna
CALD	1	Caldaia	89 dB/A cadauno	Esterna
TE	1	Torcia di emergenza	94 dB/A cadauno	Esterna
QLIM.	1	Unità esterna dimatizzatore palazzina uffici	50 dB/A	Estema

Per le sorgenti interne ai fini del calcolo è stato considerato un potere Fonoisolante Rw di una struttura in calcestruzzo armato pari a 54 dB.

Mentre come presidio di mitigazione una barriera, tipo Louvres della Bosco Italia, a contorno dell'area UP.

In merito all'analisi dei flussi di traffico, si è tenuto conto dei seguenti parametri:

Traffico indotto in fase di cantiere:

	Giorni di lav.	N° mezzi/giorno
Automezzi di trasporto delle forniture in cantiere	100	10
Automezzi dei dipendenti delle società coinvolte nella realizzazione dell'impianto	450	20
SOMMANO		30

Traffico indotto in fase di esercizio dell'impianto:

	Flusso annuo	Scenario di picco di massima assunto
	t/anno	n° mezzi/giorno
Rifiuti in ingresso FORSU	40′000	101
Rifiuti in ingresso Verde	5′000	6
Compost in uscita	1′650	6
Percolato a smaltimento	4'000	1
Altri rifiuti in uscita	4'400	1
SOMMANO		115

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto

acustico e relativi allegati

8 RISULTATI E RELATIVA ANALISI

I risultati delle simulazioni sono stati confrontati, per i ricettori prossimi all'area, con i limiti di

immissione previsti dal D.P.C.M. 14 novembre 1997 per le classi acustiche VI, IV el I. Per la

determinazione dei valori residui relativi ai ricettori da R1 a R5, è stata utilizzata la misura M4; Per i

ricettori da R6 a R10 la misura M3. Per i ricettori da R11 a R15, la misura M2; Per i ricettori da R16 a

R18, la misura M1.

Verifica dei limiti assoluti di immissione:

Per la verifica del rumore emesso ed immesso nell'ambiente esterno da specifiche sorgenti disturbanti,

bisogna comparare la misura ad un tempo di integrazione pari all'intero periodo di riferimento (TR),

che nel caso in esame è pari a 16 ore, ovvero 960 minuti, (6.00÷22.00) corrispondente al periodo di

riferimento diurno.

In pratica il rumore immesso ed emesso dalle sorgenti in disamina nell'ambiente esterno, va diluito

sull'intero tempo di riferimento, in relazione al loro tempo di funzionamento.

Il valore del livello di rumore ambientale ridotto all'intero periodo di riferimento TR è dato dalla

seguente relazione:

$$L_{Aeq,TR} = \frac{10\log\left[\frac{1}{TR}\sum_{i=1}^{n} (T_0)_i 10^{0.1L_{Aeq,(T_0)_i}}\right]}{[dB(A)]}$$

dove To è il tempo di osservazione, ovvero il tempo complessivo di funzionamento della sorgente

sonora specifica, ovvero il cantiere. Considerato che il ciclo lavorativo durante il periodo di riferimento

diurno si articola su 8 ore durante la fase di cantiere e 12 ore in fase di esercizio, mentre nel tempo di

riferimento notturno funzionano solo gli impianti si ottengono i risultati riportati nelle pagine che

seguono.

Nelle tabelle seguenti si indicano con: da R1 a R18 vengono indicati i ricettori più prossimi all'area in

disamina (riportati in ortofoto al paragrafo 3) e Dove PT = Piano Terra, PS1 = Piano 1, PS2 = Piano

2.....PSN = Piano ennesimo.

pag. 20

Fase di Cantiere

Scenario 1 allestimento cantiere:

RICETTO RE	IMMISSIONE	IMMISSIONE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	35,2	32,2		53,3	53,4	0,1	
R1 1 PS1N/O	39,9	36,9		53,3	53,5	0,2	
R2 1 PT N/O	32,0	29,0	70	53,3	53,3	0,0	
R2 1 PS1N/O	32,5	29,5		53,3	53,3	0,0	
R2 1 PS2N/O	34,6	31,6		53,3	53,4	0,1	
R3 1 PT Nord	53,4	50,4		53,3	56,3	3,0	
R3 1 PS1Nord	53,6	50,6		53,3	56,5	3,2	
R3 1 PS2Nord	53,9	50,9		53,3	56,6	3,3	
R4 1 PT Nord	53,9	50,9		53,3	56,6	3,3	
R4 1 PS1Nord	54,0	51,0	55	53,3	56,7	3,4	
R5 1 PT Nord	53,8	50,8		53,3	56,6	3,3	
R5 1 PS1Nord	53,9	50,9		53,3	56,6	3,3	
R6 1 PT Nord	52,8	49,8		57,6	58,8	1,2	5
R6 1 PS1Nord	53,5	50,5		57,6	59,0	1,4	
R7 1 PT Ovest	52,7	49,7		57,6	58,8	1,2	
R7 1 PS1Ovest	53,0	49,9	65	57,6	58,9	1,3	
R8 1 PT Ovest	51,6	48,6	03	57,6	58,6	1,0	
R8 1 PS1Ovest	52,3	49,3		57,6	58,7	1,1	
R9 1 PT N/O	51,8	48,8		57,6	58,6	1,0	
R10 1 PT N/O	50,1	47,0	55	57,6	58,3	0,7	
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2	
R11 1 PT N/O	50,8	47,8		56,2	57,3	1,1	
R11 1 PS1N/O	51,5	48,5	65	56,2	57,5	1,3	
R12 1 PT N/O	46,7	43,7	- 03	56,2	56,7	0,5	
R13 1 PT S/O	48,0	45,0		56,2	56,8	0,6	8

R14 1 PT S/E	50,3	47,3		56,2	57,2	1,0
R14 1 PS1S/E	50,9	47,9		56,2	57,3	1,1
R15 1 PT S/E	45,2	42,2		56,2	56,5	0,3
R15 1 PS1S/E	48,1	45,1		56,2	56,8	0,6
R16 1 PS1S/E	49,7	46,7		59,4	59,8	0,4
R16 1 PS2S/E	50,5	47,5		59,4	59,9	0,5
R16* 1 PT Est	46,5	43,5		59,4	59,6	0,2
R17 1 PT S/E	44,8	41,8		59,4	59,5	0,1
R18 1 PT S/E	44,7	41,7	55	59,4	59,5	0,1
R18 1 PS1S/E	44,8	41,8		59,4	59,5	0,1

Scenario 2 Opere di rimodellamento morfologico:

RICETTORE	IMMISSIONE	IMMISSIONE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	38,0	35,0		53,3	53,4	0,1	
R1 1 PS1N/O	42,3	39,3		53,3	53,6	0,3	
R2 1 PT N/O	35,8	32,8	70	53,3	53,4	0,1	
R2 1 PS1N/O	36,3	33,3		53,3	53,4	0,1	
R2 1 PS2N/O	38,4	35,4		53,3	53,4	0,1	
R3 1 PT Nord	56,7	53,7		53,3	58,3	5,0	
R3 1 PS1Nord	56,9	53,9		53,3	58,5	5,2	.5
R3 1 PS2Nord	57,2	54,2		53,3	58,7	5,4	
R4 1 PT Nord	57,4	54,4		53,3	58,8	5,5	
R4 1 PS1Nord	57,6	54,6	55	53 <mark>,</mark> 3	59,0	5,7	
R5 1 PT Nord	57,4	54,4		53,3	58,9	5,6	
R5 1 PS1Nord	57,7	54,7	3	53,3	59,0	5,7	
R6 1 PT Nord	57,0	54,0		57,6	60,3	2,7	
R6 1 PS1Nord	57,7	54,7		57 , 6	60,7	3,1	
R7 1 PT Ovest	57,3	54,2	65	57,6	60,4	2,8	

R7 1		it it	l '			6 3
PS1Ovest	57,5	54,5		57,6	60,6	3,0
R8 1 PT		10 maga # 50000	1			200 4 200
Ovest	56,1	53,1		57,6	59,9	2,3
R8 1		12		F7.6		3
PS1Ovest	57,0	54,0		57,6	60,3	2,7
R9 1 PT				57,6		
N/O	58,7	55,7		37,0	61,2	3,6
R10 1 PT			55	57,6		
N/O	58,6	55,6	33	37,0	61,2	3,6
R10 1				57,6		
PS1N/O	45,0	42,0		37,0	57,8	0,2
R11 1 PT				56,2		
N/O	58,1	55,1		55,2	60,3	4,1
R11 1				56,2		
PS1N/O	59,1	56,1			60,9	4,7
R12 1 PT	10070	120121		56,2	22.0	272
N/O	55,8	52,8		8	59,0	2,8
R13 1 PT	F0 F	50.5		56,2	50.4	4.0
S/O	53,5	50,5		-	58,1	1,9
R14 1 PT	CO 0	F7.0		56,2	C2.1	Γ0
S/E R14 1	60,9	57,9			62,1	5,9
PS1S/E	61,3	58,2	65	56,2	62,4	6,2
R15 1 PT	01,5	36,2			02,4	0,2
S/E	51,4	48,4		56,2	57,4	1,2
R15 1	31,7	70,7		3	37,7	1,2
PS1S/E	57,6	54,6		56,2	60,0	3,8
R16 1	3.,0	5.,5			55,5	3,0
PS1S/E	53,2	50,2		59,4	60,3	0,9
R16 1			1	50.4		
PS2S/E	54,4	51,4		59,4	60,6	1,2
R16* 1 PT	2000 MR # 800			50.4		
Est	51,4	48,4		59,4	60,0	0,6
R17 1 PT				E0.4		
S/E	48,5	45,5		59,4	59,7	0,3
R18 1 PT			55	59,4		
S/E	48,4	45,3	33	55,4	59,7	0,3
R18 1				59,4		
PS1S/E	48,9	45,9		33,4	59,8	0,4

Scenario 3 Preparazione dei sottofondi stradali e delle aree di impianto:

RICETTO RE	IMMISSIONE	IMMISSIONE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIAL E DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	37,9	34,9	70	53,3	53,4	0,1	-
R1 1 PS1N/O	42,2	39,2	70	53,3	53,6	0,3	5

R2 1 PT	Ε.	17		62342400	*	
N/O	35,6	32,6		53,3	53,4	0,1
R2 1 PS1N/O	36,1	33,1		53,3	53,4	0,1
R2 1 PS2N/O	38,2	35,2		53,3	53,4	0,1
R3 1 PT Nord	56,5	53,5		53,3	58,2	4,9
R3 1 PS1Nord	56,7	53,7		53,3	58,3	5,0
R3 1 PS2Nord	57,0	54,0		53,3	58,6	5,3
R4 1 PT Nord	57,2	54,2		53,3	58,7	5,4
R4 1 PS1Nord	57,4	54,4	55	53,3	58,8	5,5
R5 1 PT Nord R5 1	57,3	54,3		53,3	58,7	5,4
PS1Nord R6 1 PT	57,5	54,5		53,3	58,9	5,6
Nord R6 1	56,8	53,8		57,6	60,2	2,6
PS1Nord R7 1 PT	57,6	54,5		57,6	60,6	3,0
Ovest	57,1	54,1		57,6	60,4	2,8
PS1Ovest R8 1 PT	57,4	54,3	65	57,6	60,5	2,9
Ovest R8 1	56,0	53,0		57,6	59,9	2,3
PS1Ovest R9 1 PT	56,8	53,8		57,6	60,2	2,6
N/O R10 1	58,6	55,6		57,6	61,1	3,5
PT N/O R10 1	58,5	55,5	55	57,6	61,1	3,5
PS1N/O R11 1	45,0	42,0		57,6	57,8	0,2
PT N/O R11 1	58,0	55,0		56,2	60,2	4,0
PS1N/O R12 1	59,0	56,0		56,2	60,9	4,7
PT N/O R13 1	55,7	52,7		56,2	59,0	2,8
PT S/O R14 1	53,4	50,4)	56,2	58,0	1,8
PT S/E R14 1	60,8	57,8	65	56,2	62,1	5,9
PS1S/E R15 1	61,2	58,2		56,2	62,4	6,2
PT S/E R15 1 PS1S/E	51,3 57,5	48,3 54,5		56,2	57,4 59,9	3,7
R16 1 PS1S/E	53,1	50,0		59,4	60,3	0,9
R16 1 PS2S/E	54,2	51,2	<u> </u>	59,4	60,6	1,2

R16* 1 PT Est	51,2	48,2		59,4	60,0	0,6
R17 1 PT S/E	48,3	45,3	18	59,4	59,7	0,3
R18 1 PT S/E	48,2	45,1	55	59,4	59,7	0,3
R18 1 PS1S/E	48,7	45,7		59,4	59,8	0,4

Scenario 4 Opere di approntamento delle strutture ipogeee e delle fondazioni:

RICETTO RE	IMMISSIONE	IMMISSIONE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTA LE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	33,7	30,7	0	53,3	53,3	0,0	8
R1 1 PS1N/O	38,7	35,7		53,3	53,4	0,1	
R2 1 PT N/O	29,2	26,2	70	53,3	53,3	0,0	
R2 1 PS1N/O	29,8	26,8		53,3	53,3	0,0	
R2 1 PS2N/O	31,8	28,8		53,3	53,3	0,0	
R3 1 PT Nord	51,4	48,4		53,3	55,5	2,2	
R3 1 PS1Nord	51,9	48,8		53,3	55,6	2,3	s
R3 1 PS2Nord	52,1	49,1		53,3	55,8	2,5	<u>k</u>
R4 1 PT Nord	52,5	49,5		53,3	55,9	2,6	£
R4 1 PS1Nord	52,9	49,9	55	53,3	56,1	2,8	ε
R5 1 PT Nord	52,5	49,5		53,3	55,9	2,6	5
R5 1 PS1Nord	52,9	49,9		53,3	56,1	2,8	s
R6 1 PT Nord	51,8	48,7		57,6	58,6	1,0	
R6 1 PS1Nord	52,1	49,1		57,6	58,7	1,1	
R7 1 PT Ovest	51,3	48,3		57,6	58,5	0,9	ž.
R7 1 PS1Oves t	51,5	48,5	65	57,6	58,6	1,0	
R8 1 PT Ovest	49,9	46,9	65	57,6	58,3	0,7	S
R8 1 PS1Oves t	51,0	48,0	s -	57,6	58,5	0,9	
R9 1 PT N/O	52,3	49,3	55	57,6	58,7	1,1	
R10 1 PT N/O	52,6	49,6	33	57,6	58,8	1,2	

R10 1		1	ľ	F7.6		
PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT N/O	53,1	50,1		56,2	57,9	1,7
R11 1 PS1N/O	53,9	50,9		56,2	58,2	2,0
R12 1 PT N/O	51,7	48,7		56,2	57,5	1,3
R13 1 PT S/O	49,0	46,0		56,2	57,0	0,8
R14 1 PT S/E	54,5	51,5		56,2	58,4	2,2
R14 1 PS1S/E	54,7	51,7	65	56,2	58,5	2,3
R15 1 PT S/E	44,6	41,6		56,2	56,5	0,3
R15 1 PS1S/E	51,2	48,2		56,2	57,4	1,2
R16 1 PS1S/E	47,0	44,0		59,4	59,6	0,2
R16 1 PS2S/E	48,1	45,1		59,4	59,7	0,3
R16* 1 PT Est	45,7	42,7		59,4	59,6	0,2
R17 1 PT S/E	41,7	38,6		59,4	59,5	0,1
R18 1 PT S/E	41,6	3 <mark>8,</mark> 5	55	59,4	59,5	0,1
R18 1 PS1S/E	42,0	39,0		59,4	59,5	0,1

Scenario 5 Installazione in opera di prefabbricati strutturali:

RICETTOR IMMISS IONE E LAeq dB(A)	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO	
		LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	35,4	32,3		53,3	53,4	0,1	
R1 1 PS1N/O	40,9	37,9		53,3	53,5	0,2	
R2 1 PT N/O	24,4	21,4	70	53,3	53,3	0,0	5
R2 1 PS1N/O	25,5	22,5		53,3	53,3	0,0	
R2 1 PS2N/O	27,1	24,1		53,3	53,3	0,0	
R3 1 PT Nord	46,0	43,0	55	53,3	54,0	0,7	
R3 1 PS1Nord	46,5	43,5		53,3	54,1	0,8	

R3 1		j* **	1	ė ·	² 1	
PS2Nord	47,1	44,1		53,3	54,2	0,9
R4 1 PT	.,,1	1 1/1		Daniel St. St.	JIJE	0,3
Nord	47,3	44,3		53,3	54,3	1,0
R4 1	17,5	,5			3 1,5	1,0
PS1Nord	47,8	44,8		53,3	54,4	1,1
R5 1 PT					•	
Nord	47,0	44,0		53,3	54,2	0,9
R5 1				F2.2		· ·
PS1Nord	47,5	44,5		53,3	54,3	1,0
R6 1 PT				F7.6		72
Nord	45,4	42,4		57,6	57,9	0,3
R6 1	0.00			57,6	1211	121
PS1Nord	46,0	42,9		37,0	57,9	0,3
R7 1 PT		, and the second		57,6		
Ovest	44,4	41,4		57,0	57,8	0,2
R7 1	60 min (m.)	1.29822		57,6	550000000	
PS1Ovest	44,6	41,6	65	,0	57,8	0,2
R8 1 PT	20200	5245524		57,6		272
Ovest	44,5	41,5			57,8	0,2
R8 1	45.0	42.2		57,6	57.0	
PS1Ovest	45,3	42,3			57,9	0,3
R9 1 PT	42.2	40.2		57,6	F7.0	0.3
N/O R10 1 PT	43,2	40,2			57,8	0,2
N/O	41,5	20 E	55	57,6	57,7	0,1
R10 1	41,3	38,5			31,1	0,1
PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT	45,0	42,0			37,0	0,2
N/O	46,9	43,9		56,2	56,7	0,5
R11 1	10,5	13,3		The state of the s	30,1	0,0
PS1N/O	47,1	44,1		56,2	56,7	0,5
R12 1 PT	-				•	
N/O	45,4	42,4		56,2	56,5	0,3
R13 1 PT		1		FC 2		10.50
s/o	45,4	42,3		56,2	56,5	0,3
R14 1 PT	4.50.			EC 2		W
S/E	44,7	41,7		56,2	56,5	0,3
R14 1			65	56,2		
PS1S/E	45,0	41,9	03	30,2	56,5	0,3
R15 1 PT				56,2		
S/E	37,8	34,8			56,3	0,1
R15 1	40.4	27.		56,2	56.3	0.4
PS1S/E	40,4	37,4		<i>t</i> :	56,3	0,1
R16 1	20.4	26.4		59,4	F0.4	0.0
PS1S/E	39,4	36,4		S.	59,4	0,0
R16 1 PS2S/E	40.7	37.7		59,4	50 E	0,1
R16* 1	40,7	37,7		- PC	59,5	0,1
PT Est	38,6	35,6		59,4	59,4	0,0
R17 1 PT	30,0	33,0		98543 - 24	33,4	0,0
S/E	35,3	32,3		59,4	59,4	0,0
R18 1 PT	55,5	52,5	690892	York: RE	55,1	5,0
S/E	34,9	31,9	55	59,4	59,4	0,0
R18 1	social Tab	-0.01.3 6 TM			400000 1 0000	-
PS1S/E	35,3	32,2		59,4	59,4	0,0
	0.000#8981	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			G STREET	

Scenario 6 Realizzazione della struttura portante dei tunnels di trattamento di trattamento aerobico:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	30,4	27,4		53,3	53,3	0,0	
R1 1 PS1N/O	36,4	33,4		53,3	53,4	0,1	
R2 1 PT N/O	27,6	24,6	70	53,3	53,3	0,0	
R2 1 PS1N/O	27,8	24,8		53,3	53,3	0,0	
R2 1 PS2N/O	29,3	26,3		53,3	53,3	0,0	
R3 1 PT Nord	48,8	45,8		53,3	54,6	1,3	
R3 1 PS1Nord	48,8	45,8		53,3	54,6	1,3	
R3 1 PS2Nord	49,2	46,2		53,3	54,7	1,4	
R4 1 PT Nord	49,2	46,2		53,3	54,7	1,4	
R4 1 PS1Nord	49,7	46,7	55	53,3	54,9	1,6	
R5 1 PT Nord	48,6	45,6		53,3	54,6	1,3	
R5 1 PS1Nord	49,1	46,0		53,3	54,7	1,4	
R6 1 PT Nord	46,6	43,6		57,6	57,9	0,3	5
R6 1 PS1Nord				57,6	W	0,4	
R7 1 PT	47,2	44,2		57,6	58,0	0,3	
R7 1 PS1Ovest	45,5	42,5		57,6	57,9		
R8 1 PT	45,7	42,7	65	57,6	57,9	0,3	
R8 1 PS1Ovest	44,7 46,0	41,7		57,6	57,8 57,9	0,2	
R9 1 PT N/O	43,1	40,1		57,6	57,8	0,3	
R10 1 PT N/O			55	57,6		151	
R10 1	40,6	37,6		57,6	57,7	0,1	
PS1N/O R11 1 PT	45,0	42,0		56,2	57,8	0,2	
N/O R11 1	46,8	43,8		56,2	56,7	0,5	
PS1N/O R12 1 PT	47,0	44,0	65	56,2	56,7	0,5	
N/O R13 1 PT	45,3	42,3		56,2	56,5	0,3	
s/0	45,3	42,3			56,5	0,3	

R14 1 PT S/E	44,7	41,7		56,2	56,5	0,3
R14 1 PS1S/E	44,9	41,9		56,2	56,5	0,3
R15 1 PT S/E	38,4	35,4		56,2	56,3	0,1
R15 1 PS1S/E	40,6	37,6		56,2	56,3	0,1
R16 1 PS1S/E	40,8	37,8		59,4	59,5	0,1
R16 1 PS2S/E	41,6	38,6		59,4	59,5	0,1
R16* 1 PT Est	39,8	36,8		59,4	59,4	0,0
R17 1 PT S/E	35,7	32,7		59,4	59,4	0,0
R18 1 PT S/E	35,2	32,2	55	59,4	59,4	0,0
R18 1 PS1S/E	35,7	32,7		59,4	59,4	0,0

Scenario 7 installazione impiantistica digestione anaerobica:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
LA	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	25,0	22,0	70	53,3	53,3	0,0	
R1 1 PS1N/O	28,2	25,2		53,3	53,3	0,0	
R2 1 PT N/O	24,5	21,5		53,3	53,3	0,0	
R2 1 PS1N/O	24,5	21,5		53,3	53,3	0,0	
R2 1 PS2N/O	26,1	23,1		53,3	53,3	0,0	
R3 1 PT Nord	48,7	45,7		53,3	54,6	1,3	5
R3 1 PS1Nord	49,2	46,2		53,3	54,7	1,4	
R3 1 PS2Nord	49,7	46,7		53,3	54,9	1,6	
R4 1 PT Nord	49,2	46,2	55	53,3	54,7	1,4	
R4 1 PS1Nord	49,7	46,7		53,3	54,9	1,6	
R5 1 PT Nord	48,4	45,4		53,3	54,5	1,2	

DE 4 I		e s	ı	ľ -	į.	i i
R5 1	40.0	45.0		53,3	FAC	1.2
PS1Nord	48,8	45,8			54,6	1,3
R6 1 PT	46.2	42.2		57,6	F7.0	0.2
Nord	46,3	43,3		70.	57,9	0,3
R6 1		10.0		57,6	50.0	
PS1Nord	46,9	43,9		- R	58,0	0,4
R7 1 PT	7272023	0.000		57,6	1500000	1202
Ovest	44,9	41,9			57,8	0,2
R7 1	****			57,6		
PS1Ovest	45,2	42,2	65	20000 -	57,8	0,2
R8 1 PT			192003	57,6		
Ovest	44,7	41,7			57,8	0,2
R8 1				57,6		
PS1Ovest	45,4	42,3		10000000	57,9	0,3
R9 1 PT				57,6		
N/O	42,5	39,5	55		57,7	0,1
R10 1 PT	5000000	1944-1945		57,6	20000000	851 88
N/O	40,1	37,1			57,7	0,1
R10 1	1 Westerland			57,6		(7000)
PS1N/O	45,0	42,0			57,8	0,2
R11 1 PT	Vianama)	(TENEROE)		56,2		2002
N/O	46,6	43,6			56,6	0,4
R11 1	000000000000			56,2		
PS1N/O	46,7	43,7			56,7	0,5
R12 1 PT	W.L.			56,2		2.2
N/O	45,6	42,6		11332	56,6	0,4
R13 1 PT				56,2		
s/o	45,2	42,2		1 112 102	56,5	0,3
R14 1 PT				56,2	101.01.01	100
S/E	43,9	40,9		6	56,4	0,2
R14 1	24.721	255	65	56,2		
PS1S/E	44,0	41,0	<u> </u>		56,5	0,3
R15 1 PT		26.7		56,2		
S/E	33,3	30,3			56,2	0,0
R15 1		200		56,2		
PS1S/E	37,7	34,7			56,3	0,1
R16 1				59,4		
PS1S/E	35,4	32,4			59,4	0,0
R16 1				59,4		
PS2S/E	37,8	34,8		100 Marie 1	59,4	0,0
R16* 1				59,4		
PT Est	35,4	32,4			59,4	0,0
R17 1 PT		1500000		59,4	25 B	전 16
S/E	31,5	28,5		,	59,4	0,0
R18 1 PT		1200000000	55	59,4	138000 BB	625.075#
S/E	31,5	28,5			59,4	0,0
R18 1	50.000.00000	120000000	1 -	59,4	VETASK OX	<u>12</u> 1000
PS1S/E	32,0	29,0			59,4	0,0

Scenario 8 Realizzazione delle reti interne e della pavimentazione ondustriale interna e di prossimità degli edifici prefabbricati:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
<u> </u>	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)

Realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

R1 1 PT	1	ja s	l I	j	ž.		I
N/O	49,5	46,5		53,3	54,8	1,5	
R1 1	43,3	40,3			34,6	1,3	
PS1N/O	53,0	50,0		53,3	56,2	2,9	
R2 1 PT	33,0	30,0		100	JUIL	2,3	
N/O	36,9	33,9	70	53,3	53,4	0,1	
R2 1	30/3	33/3			337.	-72	
PS1N/O	37,8	34,8		53,3	53,4	0,1	
R2 1				50.0			
PS2N/O	39,4	36,4		53,3	53,5	0,2	
R3 1 PT				F2.2		79	
Nord	56,3	53,3		53,3	58,0	4,7	
R3 1				F2 2	-X 170	121	
PS1Nord	57,1	54,1		53,3	58,6	5,3	
R3 1				F2 2	÷		
PS2Nord	57,8	54,8		53,3	59,1	5,8	
R4 1 PT				E2 2		S	
Nord	56,5	53,5		53,3	58,2	4,9	
R4 1			55	53,3	S .		
PS1Nord	57,3	54,3	55	23,3	58,7	5,4	
R5 1 PT				E2 2	- 1111	1=1	
Nord	55,7	52,6		53,3	57,6	4,3	
R5 1				53,3			
PS1Nord	56,3	53,3		33,3	58,1	4,8	
R6 1 PT				57,6			
Nord	54,2	51,2		37,6	59,2	1,6	
R6 1				57,6	-3.	121	
PS1Nord	54,8	51,8		37,0	59,4	1,8	
R7 1 PT				57,6	20		5
Ovest	53,5	50,5		37,0	59,0	1,4	
R7 1		20000000000		57,6		980000	
PS1Ovest	53,8	50,8	65	37,0	59,1	1,5	
R8 1 PT		2 34400000		57,6	e-care est	5-27-1-01	
Ovest	50,9	47,9		37,0	58,4	0,8	
R8 1	02.000001	TOWN E		57,6	695292577257	88/92/1	
PS1Ovest	52,6	49,6		,0	58,8	1,2	
R9 1 PT				57,6	110000000000	No. 10.	
N/O	52,2	49,2		1-500 (**)	58,7	1,1	
R10 1 PT			55	57,6			
N/O	50,5	47,5	22572	111225 * 200	58,4	0,8	
R10 1	45.0			57,6	57.0		
PS1N/O	45,0	42,0		S-States	57,8	0,2	
R11 1 PT	F4.3	40.2		56,2	F7.4	1.2	
N/O	51,2	48,2		92	57,4	1,2	
R11 1	F1 4	40.4		56,2	F7.4	1.2	
PS1N/O	51,4	48,4		. S.	57,4	1,2	
R12 1 PT	47.5	445		56,2	FC 7	0.5	
N/O	47,5	44,5		50	56,7	0,5	
R13 1 PT	40 F	AFF		56,2	FC 0	0.7	
S/O	48,5	45,5	65		56,9	0,7	
R14 1 PT	FO C	47.6		56,2	F7.3	1 1	
S/E	50,6	47,6			57,3	1,1	
R14 1 PS1S/E	51,6	48,6		56,2	57,5	12	
R15 1 PT	21,0	40,0			51 ₁ 5	1,3	
S/E	49,7	46,7		56,2	57.1	0,9	
R15 1	43,7	40,7			57,1	0,3	
PS1S/E	51,3	48,3		56,2	57,4	12	
LOTO/E	21,2	40,3			31,4	1,2	

R16 1 PS1S/E	50,4	47,4		59,4	59,9	0,5
R16 1 PS2S/E	51,9	48,9		59,4	60,1	0,7
R16* 1 PT Est	50,3	47,3		59,4	59,9	0,5
R17 1 PT S/E	46,2	43,2		59,4	59,6	0,2
R18 1 PT S/E	44,9	41,8	55	59,4	59,5	0,1
R18 1 PS1S/E	45,7	42,6		59,4	59,6	0,2

Scenario 9 Realizzazione dei pavimenti tecnologici dei biofiltri e delle zone di carico dei materiali:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
E	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	30,9	27,9		53,3	53,3	0,0	
R1 1 PS1N/O	34,4	31,3		53,3	53,4	0,1	
R2 1 PT N/O	29,5	26,5	70	53,3	53,3	0,0	
R2 1 PS1N/O	29,6	26,6		53,3	53,3	0,0	
R2 1 PS2N/O	31,2	28,2		53,3	53,3	0,0	
R3 1 PT Nord	52,6	49,6		53,3	56,0	2,7	
R3 1 PS1Nord	52,9	49,9		53,3	56,1	2,8	5
R3 1 PS2Nord	53,4	50,3		53,3	56,3	3,0	
R4 1 PT Nord	53,1	50,1		53,3	56,2	2,9	
R4 1 PS1Nord	53,5	50,5	55	53,3	56,4	3,1	
R5 1 PT Nord	52,2	49,2		53,3	55,8	2,5	
R5 1 PS1Nord	52,6	49,6		53,3	56,0	2,7	
R6 1 PT Nord	49,9	46,9		57,6	58,3	0,7	
R6 1 PS1Nord	50,5	47,4		57,6	58,4	0,8	
R7 1 PT Ovest	48,8	45,8	65	57,6	58,1	0,5	
R7 1 PS1Ovest	49,0	46,0	03	57,6	58,2	0,6	

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

R8 1 PT		ē š		[F7.6]		
Ovest	47,2	44,2		57,6	58,0	0,4
R8 1 PS1Ovest	48,1	45,1		57,6	58,1	0,5
R9 1 PT	40,1	43,1			36,1	0,3
N/O	46,4	43,4		57,6	57,9	0,3
R10 1 PT			55	57,6		
N/O	44,0	41,0	33	37,0	57,8	0,2
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT				56,2		2,0
N/O	47,5	44,5		30,2	56,8	0,6
R11 1 PS1N/O	47,6	44,6		56,2	56,8	0,6
R12 1 PT				56,2		
N/O	45,9	42,9		30,2	56,6	0,4
R13 1 PT	200000	1 State 1999		56,2	201500 da	
s/o	45,7	42,7		55,2	56,6	0,4
R14 1 PT S/E	AE F	42.5		56,2	EC.C.	0.4
R14 1	45,5	42,5		. 8	56,6	0,4
PS1S/E	45,7	42,7	65	56,2	56,6	0,4
R15 1 PT	335	9		FC 2		*
S/E	38,7	35,7		56,2	56,3	0,1
R15 1				56,2		
PS1S/E	41,5	38,5		30,2	56,3	0,1
R16 1	41.1	20.1		59,4	FO.F.	0.1
PS1S/E R16 1	41,1	38,1		111	59,5	0,1
PS2S/E	42,6	39,6		59,4	59,5	0,1
R16* 1	,-	1		F0.4	0.77.77	=1=
PT Est	40,6	37,5		59,4	59,5	0,1
R17 1 PT				59,4		
S/E	36,7	33,7		35,4	59,4	0,0
R18 1 PT	26.2	22.2	55	59,4	F0 4	0.5
S/E	36,2	33,2			59,4	0,0
R18 1 PS1S/E	36,6	33,6		59,4	59,4	0,0
1313/L	30,0	33,0			55,4	0,0

Scenario 10 Realizzazione della pavimentazione Industriale esterna:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
Е	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	41,6	38,6		53,3	53,6	0,3	
R1 1 PS1N/O	46,5	43,5		53,3	54,1	0,8	
R2 1 PT N/O	30,6	27,6	70	53,3	53,3	0,0	F
R2 1 PS1N/O	31,3	28,3		53,3	53,3	0,0	5
R2 1 PS2N/O	33,0	29,9		53,3	53,3	0,0	
R3 1 PT Nord	53,0	50,0	55	53,3	56,2	2,9	

(įž š	,	6	i i	
R3 1	F2.4	FO.4		53,3	56.4	2.4
PS1Nord	53,4	50,4			56,4	3,1
R3 1 PS2Nord	E2 0	E0.0		53,3	56,6	2.2
R4 1 PT	53,8	50,8		- KA	30,0	3,3
Nord	53,5	50,5		53,3	56,4	3,1
R4 1	33,3	30,3			30,1	5,1
PS1Nord	53,9	50,9		53,3	56,6	3,3
R5 1 PT				50.0		
Nord	52,6	49,6		53,3	56,0	2,7
R5 1				53,3		1
PS1Nord	53,0	50,0		دردد	56,2	2,9
R6 1 PT				57,6	74.60	
Nord	50,5	47,5		37,0	58,4	0,8
R6 1				57,6		
PS1Nord	51,0	48,0	;		58,5	0,9
R7 1 PT	40.4	AC A		57,6	F0.3	0.6
Ovest R7 1	49,4	46,4		5.	58,2	0,6
PS1Ovest	49,7	46,6		57,6	58,2	0,6
R8 1 PT	73,1	40,0	65	200	30,2	0,0
Ovest	47,7	44,7		57,6	58,0	0,4
R8 1						-,-
PS10vest	48,7	45,7		57,6	58,1	0,5
R9 1 PT				F7.C		
N/O	47,3	44,3		57,6	58,0	0,4
R10 1 PT			55	57,6	50. 1921	
N/O	45,3	42,3	33	37,0	57,8	0,2
R10 1	111111			57,6		1012
PS1N/O	45,0	42,0	;	ē.	57,8	0,2
R11 1 PT N/O	49.0	4E O		56,2	EC 0	0,6
R11 1	48,0	45,0		=	56,8	0,6
PS1N/O	48,1	45,1		56,2	56,8	0,6
R12 1 PT	10,1	13,1			30,0	0,0
N/O	46,2	43,2		56,2	56,6	0,4
R13 1 PT				56.2	,	-
s/o	46,0	43,0		56,2	56,6	0,4
R14 1 PT	-			56,2		
S/E	46,2	43,2		30,2	56,6	0,4
R14 1			65	56,2	***	750
PS1S/E	46,7	43,6	(5.5) (56,7	0,5
R15 1 PT	12.0	20.0		56,2	EC 4	0.3
S/E R15 1	42,8	39,8		100	56,4	0,2
PS1S/E	44,5	41,5		56,2	56,5	0,3
R16 1	17,5	71,3			30,3	0,5
PS1S/E	44,0	41,0		59,4	59,5	0,1
R16 1		-7-		FO		-/-
PS2S/E	45,4	42,4		59,4	59,6	0,2
R16* 1				E0 4	750	
PT Est	43,6	40,6		59,4	59,5	0,1
R17 1 PT				59,4		
S/E	39,5	36,5		33,7	59,4	0,0
R18 1 PT	20.5	22.5	55	59,4		
S/E	39,2	36,2	55		59,4	0,0
R18 1 PS1S/E	20 E	26 E		59,4	E0 4	0.0
1.9T9/E	39,5	36,5		ICA II	59,4	0,0

Scenario 11 Costruzione delle strutture metalliche per il sostegno delle tubazioni di convogliamento dell'aria di processo e posa dei collettori:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
-	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	37,5	34,5		53,3	53,4	0,1	
R1 1 PS1N/O	42,8	39,7		53,3	53,7	0,4	
R2 1 PT N/O	25,6	22,6	70	53,3	53,3	0,0	
R2 1 PS1N/O	26,7	23,7		53,3	53,3	0,0	
R2 1 PS2N/O	28,2	25,2		53,3	53,3	0,0	
R3 1 PT Nord	43,3	40,3		53,3	53,7	0,4	
R3 1 PS1Nord	43,9	40,9		53,3	53,8	0,5	
R3 1 PS2Nord	44,4	41,4		53,3	53,8	0,5	
R4 1 PT Nord	43,3	40,3		53,3	53,7	0,4	
R4 1 PS1Nord	43,9	40,9	55	53,3	53,8	0,5	
R5 1 PT Nord	43,0	40,0		53,3	53,7	0,4	
R5 1 PS1Nord	43,6	40,6		53,3	53,7	0,4	
R6 1 PT Nord	42,3	39,2		57,6	57,7	0,1	5
R6 1 PS1Nord	43,0	40,0		57,6	57,7	0,1	
R7 1 PT Ovest	41,2	38,2		57,6	57,7	0,1	
R7 1 PS1Ovest	41,5	38,5	-	57,6	57,7	0,1	
R8 1 PT Ovest	43,2	40,2	65	57,6	57,8	0,2	
R8 1 PS1Ovest	43,9	40,9		57,6	57,8	0,2	
R9 1 PT N/O	40,8	37,8		57,6	57,7	0,1	
R10 1 PT N/O	39,4	36,3	55	57,6	57,7	0,1	
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2	
R11 1 PT N/O	46,6	43,6		56,2	56,7	0,5	
R11 1 PS1N/O	46,7	43,7	lere:	56,2	56,7	0,5	
R12 1 PT N/O	45,4	42,4	65	56,2	56,5	0,3	
R13 1 PT S/O	45,2	42,2		56,2	56,5	0,3	

R14 1 PT S/E	44,2	41,2		56,2	56,5	0,3
R14 1 PS1S/E	44,5	41,4		56,2	56,5	0,3
R15 1 PT S/E	37,0	34,0		56,2	56,3	0,1
R15 1 PS1S/E	40,2	37,2		56,2	56,3	0,1
R16 1 PS1S/E	39,5	36,5		59,4	59,4	0,0
R16 1 PS2S/E	40,9	37,9		59,4	59,5	0,1
R16* 1 PT Est	39,5	36,5		59,4	59,4	0,0
R17 1 PT S/E	34,0	31,0		59,4	59,4	0,0
R18 1 PT S/E	33,8	30,7	55	59,4	59,4	0,0
R18 1 PS1S/E	34,4	31,3		59,4	59,4	0,0

Scenario 12 Costruzione del fabbricato servizi sul lato est:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
E	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	20,3	17,3		53,3	53,3	0,0	
R1 1 PS1N/O	25,0	22,0		53,3	53,3	0,0	
R2 1 PT N/O	17,9	14,9	70	53,3	53,3	0,0	
R2 1 PS1N/O	18,6	15,6		53,3	53,3	0,0	
R2 1 PS2N/O	20,6	17,6		53,3	53,3	0,0	
R3 1 PT Nord	39,5	36,5		53,3	53,5	0,2	5
R3 1 PS1Nord	39,6	36,6		53,3	53,5	0,2	
R3 1 PS2Nord	40,0	37,0		53,3	53,5	0,2	
R4 1 PT Nord	40,6	37,6		53,3	53,5	0,2	
R4 1 PS1Nord	40,8	37,8	55	53,3	53,5	0,2	
R5 1 PT Nord	40,7	37,7		53,3	53,5	0,2	
R5 1 PS1Nord	41,0	38,0		53,3	53,5	0,2	
R6 1 PT Nord	40,8	37,8		57,6	57,7	0,1	
R6 1 PS1Nord	41,6	38,6		57,6	57,7	0,1	
R7 1 PT Ovest	40,1	37,1	65	57,6	57,7	0,1	

R7 1		ė į	ſ	f 1	Ī	
PS1Ovest	40,3	37,3		57,6	57,7	0,1
R8 1 PT	42.7	40.7		57,6	F7.0	0.2
Ovest R8 1	43,7	40,7		21	57,8	0,2
PS1Ovest	43,9	40,8		57,6	57,8	0,2
R9 1 PT				57,6		
N/O	41,7	38,7	55	37,0	57,7	0,1
R10 1 PT N/O	40,9	37,8		57,6	57,7	0,1
R10 1	15.	11511		F7.6	ž	70
PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT				56,2		
N/O	46,8	43,8		30,2	56,7	0,5
R11 1 PS1N/O	46,9	43,9		56,2	56,7	0,5
R12 1 PT	5.5×0 12×	r agranas		56,2		25/ 200
N/O	45,4	42,4	í	30,2	56,5	0,3
R13 1 PT	45.5	40.0		56,2		200
S/O R14 1 PT	45,2	42,2			56,5	0,3
S/E	44,4	41,4		56,2	56,5	0,3
R14 1			65	56,2		
PS1S/E	44,5	41,5	03	30,2	56,5	0,3
R15 1 PT	25.4	22.4		56,2	EC 2	0.0
S/E R15 1	35,1	32,1			56,2	0,0
PS1S/E	39,0	36,0		56,2	56,3	0,1
R16 1				59,4		
PS1S/E	36,6	33,6		6.1	59,4	0,0
R16 1 PS2S/E	38,1	35,1		59,4	59,4	0,0
R16* 1	30,1	33,1			33,1	0,0
PT Est	35,1	32,1		59,4	59,4	0,0
R17 1 PT				E0.4		1000
S/E	31,8	28,8	:	59,4	59,4	0,0
R18 1 PT	A2004		55	59,4	10-14-00-00-0	
S/E	31,7	28,7	- 55	,:	59,4	0,0
R18 1 PS1S/E	31,8	28,8		59,4	59,4	0,0

Scenario 13 Costruzione della viabilità generale e di quella interna all'area tecnologica, compreso blocco guardiania e sorveglianza:

RICETTOR	IMMISS	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
Е	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	49,4	46,4	70	53,3	54,8	1,5	5

	, ,	je s	ı	į.	ita i	[편 원
R1 1 PS1N/O	52,7	49,7		53,3	56,0	2,7
R2 1 PT N/O	39,0	36,0		53,3	53,5	0,2
R2 1 PS1N/O	39,6	36,6		53,3	53,5	0,2
R2 1				53,3		
PS2N/O R3 1 PT	41,4	38,4			53,6	0,3
Nord	59,2	56,1	55	53,3	60,2	6,9
R3 1 PS1Nord	59,6	56,6		53,3	60,5	7,2
R3 1 PS2Nord	60,2	57,2		53,3	61,0	7,7
R4 1 PT Nord	59,6	56,6		53,3	60,5	7,2
R4 1	te Pare ture			53,3	Salar Marian	Section .
PS1Nord R5 1 PT	60,2	57,2		53,3	61,0	7,7
Nord R5 1	59,1	56,1			60,1	6,8
PS1Nord R6 1 PT	59,6	56,6		53,3	60,5	7,2
Nord	58,0	55,0		57,6	60,8	3,2
R6 1 PS1Nord	58,6	55,6		57,6	61,2	3,6
R7 1 PT Ovest	57,7	54,7	65	57,6	60,7	3,1
R7 1				57,6	2	
R8 1 PT	58,0	55,0		6.1.	60,8	3,2
Ovest R8 1	55,6	52,6		57,6	59,7	2,1
PS1Ovest	56,8	53,8		57,6	60,2	2,6
R9 1 PT N/O	57,3	54,3	55	57,6	60,5	<mark>2,</mark> 9
R10 1 PT N/O	56,1	53,1		57,6	59,9	2,3
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	65	56,2	1/2	7.77
N/O R11 1	55,9	52,9		56,2	59,1	2,9
PS1N/O R12 1 PT	57,0	54,0		904	59,7	3,5
N/O	54,2	51,2		56,2	58,3	2,1
R13 1 PT S/O	52,2	49,2		56,2	57,7	1,5
R14 1 PT S/E	59,8	56,8		56,2	61,4	5,2
R14 1 PS1S/E	60,4	57,4		56,2	61,8	5,6
R15 1 PT S/E	52,2	49,2		56,2	57,6	1,4
R15 1 PS1S/E	57,6	54,6		56,2	59,9	3,7
R16 1		50 to 1889		59,4	2	201 201
PS1S/E	54,1	51,1			60,5	1,1

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

R16 1 PS2S/E	55,2	52,2		59,4	60,8	1,4
R16* 1 PT Est	53,6	50,6		59,4	60,4	1,0
R17 1 PT S/E	49,5	46,4		59,4	59,8	0,4
R18 1 PT S/E	48,9	45,9	55	59,4	59,8	0,4
R18 1 PS1S/E	49,3	46,3		59,4	59,8	0,4

Scenario 14 Completamento della rete e dei servizi:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
E	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	28,5	25,5		53,3	53,3	0,0	
R1 1 PS1N/O	31,8	28,8		53,3	53,3	0,0	
R2 1 PT N/O	28,1	25,1	70	53,3	53,3	0,0	
R2 1 PS1N/O	28,2	25,2		53,3	53,3	0,0	
R2 1 PS2N/O	29,9	26,9		53,3	53,3	0,0	
R3 1 PT Nord	52,2	49,2		53,3	55,8	2,5	
R3 1 PS1Nord	52,6	49,6		53,3	56,0	2,7	
R3 1 PS2Nord	53,1	50,1		53,3	56,2	2,9	
R4 1 PT Nord	53,0	49,9		53,3	56,1	2,8	
R4 1 PS1Nord	53,3	50,3	55	53,3	56,3	3,0	5
R5 1 PT Nord	52,2	49,1		53,3	55,8	2,5	_
R5 1 PS1Nord	52,5	49,5		53,3	55,9	2,6	
R6 1 PT Nord	50,1	47,1		57,6	58,3	0,7	
R6 1 PS1Nord	50,6	47,6		57,6	58,4	0,8	
R7 1 PT Ovest	49,1	46,1		57,6	58,2	0,6	
R7 1 PS1Ovest	49,2	46,2	65	57,6	58,2	0,6	
R8 1 PT Ovest	47,6	44, 5	(ಪ್ರಾ	57,6	58,0	0,4	
R8 1 PS1Ovest	48,4	45,4		57,6	58,1	0,5	
R9 1 PT N/O	47,1	44,1	55	57,6	58,0	0,4	
R10 1 PT N/O	44,7	41,7		57,6	57,8	0,2	

acustico e relativi allegati

R10 1				57,6	t I	
PS1N/O	45,0	42,0		37,0	57,8	0,2
R11 1 PT N/O	47,7	44,7		56,2	56,8	0,6
R11 1 PS1N/O	47,8	44,8		56,2	56,8	0,6
R12 1 PT N/O	46,0	43,0		56,2	56,6	0,4
R13 1 PT S/O	45,8	42,8		56,2	56,6	0,4
R14 1 PT S/E	45,6	42,6		56,2	56,6	0,4
R14 1 PS1S/E	45,9	42,9	65	56,2	56,6	0,4
R15 1 PT S/E	37,2	34,2		56,2	56,3	0,1
R15 1 PS1S/E	41,2	38,2		56,2	56,3	0,1
R16 1 PS1S/E	41,2	38,2		59,4	59,5	0,1
R16 1 PS2S/E	42,8	39,8		59,4	59,5	0,1
R16* 1 PT Est	40,1	37,1		59,4	59,5	0,1
R17 1 PT S/E	37, <mark>1</mark>	34,1		59,4	59,4	0,0
R18 1 PT S/E	36,7	33,7	55	59,4	59,4	0,0
R18 1 PS1S/E	36,9	33,9		59,4	59,4	0,0

Scenario 15 Interventi a verde e ricomposizione ambientale:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
E .	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	34,0	31,0		53,3	53,4	0,1	
R1 1 PS1N/O	40,6	37,5		53,3	53,5	0,2	
R2 1 PT N/O	24,3	21,3	70	53,3	53,3	0,0	
R2 1 PS1N/O	24,7	21,7		53,3	53,3	0,0	5
R2 1 PS2N/O	26,7	23,7		53,3	53,3	0,0	
R3 1 PT Nord	46,0	43,0	e.e.	53,3	54,0	0,7	
R3 1 PS1Nord	46,6	43,6	55	53,3	54,1	0,8	

R3 1	3	8	[1	B to compare the compare to the comp	į" l	
PS2Nord	47,0	44,0		53,3	54,2	0,9
R4 1 PT	,0	,,0		A CONTRACTOR	- ,,E	5,5
Nord	46,8	43,8		53,3	54,2	0,9
R4 1	1000			50.0		50. * 000
PS1Nord	47,4	44,4		53,3	54,3	1,0
R5 1 PT				FOO		- 1
Nord	46,4	43,4		53,3	54,1	0,8
R5 1				53,3		
PS1Nord	46,9	43,9		33,3	54,2	0,9
R6 1 PT				57,6		
Nord	45,2	42,2		37,0	57,8	0,2
R6 1				57,6		
PS1Nord	45,8	42,8		ATTACA COLUMN	57,9	0,3
R7 1 PT				57,6	57.0	
Ovest	44,2	41,2		70.	57,8	0,2
R7 1 PS1Ovest	44 -	/1 F		57,6	E7.0	0.3
R8 1 PT	44,5	41,5	65	=>.	57,8	0,2
Ovest	44,4	41,4		57,6	57,8	0,2
R8 1	74,4	71,4		200	51,0	U,Z
PS1Ovest	45,3	42,3		57,6	57,9	0,3
R9 1 PT	10,0	12,0			37,5	5,5
N/O	43,1	40,1		57,6	57,8	0,2
R10 1 PT				22.2		- 1
N/O	41,0	38,0	55	57,6	57,7	0,1
R10 1				E7.C	-0. 460	121
PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT				56,2		
N/O	46,8	43,7		30,2	56,7	0,5
R11 1	Blooms	17800000		56,2	10000000	#21U00
PS1N/O	46,9	43,8		,-	56,7	0,5
R12 1 PT	45.6	42.6		56,2	50.0	0.4
N/O	45,6	42,6		54	56,6	0,4
R13 1 PT	45.2	42.2		56,2	56 5	0.3
S/O R14 1 PT	45,2	42,2		1 (100 mm) (100 mm)	56,5	0,3
S/E	44,1	41,1		56,2	56,5	0,3
R14 1	77,1	71,1	(6.90 ATO)		30,3	0,3
PS1S/E	44,4	41,4	65	56,2	56,5	0,3
R15 1 PT						-,-
S/E	35,3	32,3		56,2	56,2	0,0
R15 1				EC 2		
PS1S/E	39,0	36,0		56,2	56,3	0,1
R16 1	750 NOVA - 154	O CONTRACTOR OF THE PARTY OF TH		59,4		50 - Ye-
PS1S/E	37,2	34,2		55,4	59,4	0,0
R16 1		garana es		59,4	ransa sr	202
PS2S/E	39,3	36,3		2011	59,4	0,0
R16* 1	26.0	22.0		59,4	F0.4	0.0
PT Est	36,9	33,8		numeron Calles	59,4	0,0
R17 1 PT	22.7	20.7		59,4	FO.4	0.0
S/E R18 1 PT	33,7	30,7			59,4	0,0
S/E	33,5	30,5	55	59,4	59,4	0,0
R18 1	دردد	30,3		No. of the second	55,4	0,0
PS1S/E	34,0	31,0		59,4	59,4	0,0
. 515/1	51,0	31,0			33,7	0,0

Scenario 16 Installazione Impiantistica elettrica e elettromeccanica:

RICETTOR E	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
-	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	32,1	29,1		53,3	53,3	0,0	
R1 1 PS1N/O	39,2	36,2		53,3	53,5	0,2	
R2 1 PT N/O	26,0	23,0	70	53,3	53,3	0,0	
R2 1 PS1N/O	26,2	23,2		53,3	53,3	0,0	
R2 1 PS2N/O	27,6	24,6		53,3	53,3	0,0	
R3 1 PT Nord	46,7	43,7		53,3	54,2	0,9	
R3 1 PS1Nord	47,1	44,1		53,3	54,2	0,9	
R3 1 PS2Nord	47,4	44,4		53,3	54,3	1,0	
R4 1 PT Nord	46,6	43,6		53,3	54,1	0,8	
R4 1 PS1Nord	46,9	43,9	55	53,3	54,2	0,9	
R5 1 PT Nord	45,9	42,9		53,3	54,0	0,7	
R5 1 PS1Nord	46,2	43,2		53,3	54,1	0,8	
R6 1 PT Nord	44,6	41,6		57,6	57,8	0,2	5
R6 1 PS1Nord	45,0	42,0		57,6	57,8	0,2	
R7 1 PT Ovest	43,4	40,4		57,6	57,8	0,2	
R7 1 PS1Ovest	43,6	40,6	65	57,6	57,8	0,2	
R8 1 PT Ovest	44,1	41,1	03	57,6	57,8	0,2	
R8 1 PS1Ovest	44,8	41,8		57,6	57,8	0,2	
R9 1 PT N/O	42,0	39,0		57,6	57,7	0,1	
R10 1 PT N/O	40,2	37,2	55	57,6	57,7	0,1	
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2	
R11 1 PT N/O	46,7	43,7		56,2	56,7	0,5	
R11 1 PS1N/O	46,9	43,9	65	56,2	56,7	0,5	
R12 1 PT N/O	45,6	42,6		56,2	56,6	0,4	
R13 1 PT S/O	45,2	42,2		56,2	56,5	0,3	

R14 1 PT S/E	44,7	41,7		56,2	56,5	0,3
R14 1 PS1S/E	45,0	42,0		56,2	56,5	0,3
R15 1 PT S/E	35,7	32,7		56,2	56,2	0,0
R15 1 PS1S/E	40,0	37,0		56,2	56,3	0,1
R16 1 PS1S/E	37,5	34,5		59,4	59,4	0,0
R16 1 PS2S/E	39,3	36,3		59,4	59,4	0,0
R16* 1 PT Est	36,5	33,4		59,4	59,4	0,0
R17 1 PT S/E	31,9	28,9		59,4	59,4	0,0
R18 1 PT S/E	31,8	28,8	55	59,4	59,4	0,0
R18 1 PS1S/E	32,2	29,2		59,4	59,4	0,0

Scenario 17 Opere di Finitura:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
L	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	45,3	42,3		53,3	53,9	0,6	
R1 1 PS1N/O	50,9	47,9		53,3	55,3	2,0	
R2 1 PT N/O	33,6	30,6	70	53,3	53,3	0,0	
R2 1 PS1N/O	34,2	31,2		53,3	53,4	0,1	
R2 1 PS2N/O	36,1	33,1		53,3	53,4	0,1	
R3 1 PT Nord	54,3	51,3		53,3	56,8	3,5	5
R3 1 PS1Nord	54,7	51,7		53,3	57,1	3,8	
R3 1 PS2Nord	55,3	52,3	FF	53,3	57,4	4,1	
R4 1 PT Nord	55,3	52,2	55	53,3	57,4	4,1	
R4 1 PS1Nord	55,5	52,5		53,3	57,6	4,3	
R5 1 PT Nord	55,1	52,1		53,3	57,3	4,0	

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

R5 1)	ė ė	1	ľ	f I	
PS1Nord	55,2	52,2		53,3	57,4	4,1
R6 1 PT	33,2	32,2		1000000000	37,1	312
Nord	54,0	51,0		57,6	59,2	1,6
R6 1			1	57,6		
PS1Nord	54,3	51,3		37,0	59,3	1,7
R7 1 PT		AND		57,6	287.00 × 28.00	
Ovest	53,5	50,5	:		59,0	1,4
R7 1	F2 F	F0 F		57,6	50.0	4.4
PS1Ovest R8 1 PT	53,5	50,5	65		59,0	1,4
Ovest	51,2	48,2		57,6	58,5	0,9
R8 1	JIJE	40,2			30,3	0,5
PS1Ovest	52,7	49,7		57,6	58,8	1,2
R9 1 PT				F7.6	0	200
N/O	52,5	49,5		57,6	58,8	1,2
R10 1 PT			55	57,6		-2.
N/O	50,5	47,5	55	37,0	58,4	0,8
R10 1		17.2027/1984		57,6		
PS1N/O	45,0	42,0			57,8	0,2
R11 1 PT N/O	EO 9	47.0		56,2	E7 2	1.1
R11 1	50,8	47,8	1		57,3	1,1
PS1N/O	50,9	47,9		56,2	57,3	1,1
R12 1 PT				1000		-,-
N/O	48,1	45,1		56,2	56,8	0,6
R13 1 PT				56,2	1911	121
S/O	48,1	45,1		30,2	56,8	0,6
R14 1 PT				56,2		
S/E	50,1	47,1		<u> </u>	57,1	0,9
R14 1 PS1S/E	50,8	47,8	65	56,2	57,3	1,1
R15 1 PT	30,0	77,0			37,3	1,1
S/E	47,5	44,5		56,2	56,8	0,6
R15 1				EC 2		10. 6 .15
PS1S/E	49,6	46,6		56,2	57,1	0,9
R16 1				59,4		
PS1S/E	48,7	45,7		33,4	59,8	0,4
R16 1		17 <u></u>		59,4		
PS2S/E	50,4	47,4			59,9	0,5
R16* 1 PT Est	47,8	44,8		59,4	50.7	0,3
R17 1 PT	41,0	44,0		S. Charles	59,7	0,3
S/E	44,5	41,4		59,4	59,5	0,1
R18 1 PT	1	100.00	ee.	FC *	7	
S/E	44,3	41,3	55	59,4	59,5	0,1
R18 1		3		59,4	ā	
PS1S/E	44,7	41,7		33,4	59,5	0,1

Scenario 18 Dismissione Impianto:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
Е	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	38,0	35,0	70	53,3	53,4	0,1	5

		p s	1	j	į.	
R1 1 PS1N/O	42,3	39,3		53,3	53,6	0,3
R2 1 PT N/O	35,8	32,7		5 <mark>3,</mark> 3	53,4	0,1
R2 1 PS1N/O	36,3	33,3		53,3	53,4	0,1
R2 1	30,3	33,3	,	EDD	33,4	0,1
PS2N/O	38,4	35,4		53,3	53,4	0,1
R3 1 PT Nord	56,7	53,6		53,3	58,3	5,0
R3 1 PS1Nord	56,9	53,9		53,3	58,5	5,2
R3 1 PS2Nord	57,2	54,2		53,3	58,7	5,4
R4 1 PT Nord	57,4	54,3		53,3	58,8	5,5
R4 1 PS1Nord	57,6	54,6	55	53,3	59,0	5,7
R5 1 PT Nord	57,4	54,4		53,3	58,9	5,6
R5 1 PS1Nord	57,7	54,7		53,3	59,0	5,7
R6 1 PT Nord	57,0	54,0		57,6	60,3	2,7
R6 1 PS1Nord	57,7	54,7		57,6	60,7	3,1
R7 1 PT				57,6	× //.	10
Ovest R7 1	57,2	54,2			60,4	2,8
PS1Ovest	57,5	54,5	65	57,6	60,6	3,0
R8 1 PT Ovest	56,1	53,1	03	57,6	59,9	2,3
R8 1 PS1Ovest	57,0	54,0		57,6	60,3	2,7
R9 1 PT N/O	58,7	55,7		57,6	61,2	3,6
R10 1 PT N/O	58,6	55,6	55	57,6	61,2	3,6
R10 1 PS1N/O	45,0	42,0		57,6	57,8	0,2
R11 1 PT N/O	58,1	55,1		56,2	60,3	4,1
R11 1 PS1N/O	59,1	56,1		56,2	60,9	4,7
R12 1 PT N/O	55,8	52,8		56,2	59,0	2,8
R13 1 PT S/O	53,5	50,5		56,2	58,1	1,9
R14 1 PT			65	56,2		
S/E R14 1	60,9	57,9		0.0000000000000000000000000000000000000	62,1	5,9
PS1S/E	61,3	58,2		56,2	62,4	6,2
R15 1 PT S/E	51,4	48,4		56,2	57,4	1,2
R15 1 PS1S/E	57,6	54,6	1	56,2	60,0	3,8
R16 1 PS1S/E	53,2	50,2		59,4	60,3	0,9

R16 1 PS2S/E	54,4	51,4		59,4	60,6	1,2
R16* 1 PT Est	51,4	48,4		59,4	60,0	0,6
R17 1 PT S/E	48,5	45,5		59,4	59,7	0,3
R18 1 PT S/E	48,3	45,3	55	59,4	59,7	0,3
R18 1 PS1S/E	48,9	45,9		59,4	59,8	0,4

La mappa tematica delle simulazioni viene riportata nell'elaborato "Tavole Valutazione di Impatto Acustico".

Dalle simulazioni effettuate, in alcune fasi di cantiere, emerge il superamento dei limiti differenziali e di immissione, pertanto trattandosi di un cantiere temporaneo rientrante nella fattispecie disciplinata dalla legge 447/1995 Art.6, comma 1, lettera h, si provvederà a richiedere idonea deroga acustica all'ufficio competente del comune di Napoli.

Fase di esercizio dell'impianto:

Per la fase di esercizio dell'impianto sono stati analizzati due scenari, uno relativo al tempo di riferimento diurno ed uno relativo al tempo di riferimento notturno. La scelta è stata dettata dalla condizione che il ciclo di lavoro si articola su 12 ore nel periodo di riferimento diurno, prevedendo anche operazioni sul piazzale, mentre durante il periodo di riferimento notturno sono in funzione solo gli impianti.

Nelle tabelle degli scenari che seguono sono indicati: da R1 a R18 vengono indicati i ricettori più prossimi all'area in disamina (riportati in ortofoto al paragrafo 3) e Dove PT = Piano Terra, PS1 = Piano 1, PS2 = Piano 2......PSN = Piano ennesimo.

Scenario Impianto in Esercizio Diurno:

RICETTOR	IMMISS IONE	IMMISSIO NE (TR)	LIMITE IMMISSIONE DIURNO	RESIDUO DIURNO	AMBIENTALE DIURNO	DIFFERENZIALE DIURNO	LIMITE DIFFERENZIALE DIURNO
E	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT		S-SEMEN		53,3			
N/O	27,2	26,0		-	53,3	0,0	
R1 1 PS1N/O	30,0	28,7		53,3	53,3	0,0	
R2 1 PT N/O	26,1	24,8	70	53,3	53,3	0,0	
R2 1 PS1N/O	27,7	26,5		53,3	53,3	0,0	
R2 1 PS2N/O	29,4	28,1		53,3	53,3	0,0	
R3 1 PT Nord	38,7	37,4		53,3	53,4	0,1	
R3 1 PS1Nord	40,3	39,0		53,3	53,5	0,2	
R3 1 PS2Nord	42,4	41,1		53,3	53,6	0,3	5
R4 1 PT Nord	42,6	41,4		53,3	53,7	0,4	3
R4 1 PS1Nord	43,7	42,4	55	53,3	53,7	0,4	
R5 1 PT Nord	42,2	40,9		53,3	53,6	0,3	
R5 1 PS1Nord	44,3	43,0		53,3	53,8	0,5	
R6 1 PT Nord	43,1	41,8		57,6	57,8	0,2	
R6 1 PS1Nord	43,7	42,5		57,6	57,8	0,2	
R7 1 PT Ovest	44,1	42,9	65	57,6	57,8	0,2	
R7 1 PS1Ovest	44,5	43,2	03	57,6	57,8	0,2	

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

R8 1 PT			1	F7.6		
Ovest	42,2	41,0		57,6	57,7	0,1
R8 1		- HERVISC		57,6		#0 HE
PS1Ovest	42,6	41,4			57,7	0,1
R9 1 PT N/O	44,3	43,1		57,6	57,8	0,2
R10 1 PT	11,3	73,1		7 20 10 1	37,0	U,E
N/O	43,5	42,3	55	57,6	57,8	0,2
R10 1				57,6		
PS1N/O	45,0	43,8		37,0	57,8	0,2
R11 1 PT N/O	41,1	39,8		56,2	56,3	0,1
R11 1	41,1	33,0		I VA HENTING	30,3	0,1
PS1N/O	41,2	40,0		56,2	56,3	0,1
R12 1 PT			,	56,2	8	
N/O	38,0	36,7		30,2	56,3	0,1
R13 1 PT	0.0000000			56,2	25 (20) (20)	
S/O	36,5	35,2		5	56,2	0,0
R14 1 PT S/E	38,0	36,7		56,2	56,3	0,1
R14 1	30,0	30,7			30,3	0,1
PS1S/E	40,7	39,5	65	56,2	56,3	0,1
R15 1 PT				56,2		
S/E	35,3	34,1		30,2	56,2	0,0
R15 1				56,2		
PS1S/E	37,9	36,6			56,3	0,1
R16 1 PS1S/E	32,3	31,1		59,4	59,4	0,0
R16 1	32,3	J-1,1	1		33,1	0,0
PS2S/E	33,9	32,6		59,4	59,4	0,0
R16* 1				59,4		
PT Est	32,2	30,9		33,4	59,4	0,0
R17 1 PT	3 <u>12</u> 323724	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		59,4		W12
S/E	29,6	28,3			59,4	0,0
R18 1 PT S/E	29,5	28,2	55	59,4	59,4	0,0
R18 1	20,0	20,2	:	7000	33,4	0,0
PS1S/E	29,7	28,5		59,4	59,4	0,0

Scenario Impianto in Esercizio Notturno:

RICETTOR E	IMMISS IONE	LIMITE IMMISSIONE NOTTURNO	RESIDUO NOTTURNO	AMBIENTALE NOTTURNO	DIFFERENZIALE NOTTURNO	LIMITE DIFFERENZIALE NOTTURNO
	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)	LAeq dB(A)
R1 1 PT N/O	24,3		53,3	53,3	0,0	
R1 1 PS1N/O	27,5		53,3	53,3	0,0	
R2 1 PT N/O	21,0	70	53,3	53,3	0,0	3
R2 1 PS1N/O	23,6		53,3	53,3	0,0	3
R2 1 PS2N/O	25,8		53,3	53,3	0,0	
R3 1 PT Nord	37,6	45	53,3	53,4	0,1	

R3 1	8	9	ī i		1	
PS1Nord	20.4		53,3	53,5	0,2	
	39,4			23,3	0,2	
R3 1	44.7		53,3	F2.6	0.2	
PS2Nord	41,7			53,6	0,3	
R4 1 PT	220		53,3	公司等的	Sec. Us	
Nord	42,1		55,5	53,6	0,3	
R4 1			E2 2	• •		
PS1Nord	43,0		53,3	53,7	0,4	
R5 1 PT						
Nord	41,0		53,3	53,5	0,2	
R5 1	12/0			33,5	3)2	
PS1Nord	42,8		53,3	E2 7	0.4	
	42,0			53,7	0,4	
R6 1 PT			55,4			
Nord	38,3	,	55%(4)	55,5	0,1	
R6 1			55,4		-	
PS1Nord	39,1		33,4	55,5	0,1	
R7 1 PT	6		FF 4		<u> </u>	
Ovest	37,3		55,4	55,5	0,1	
R7 1				-		
PS1Ovest	37,7		55,4	55,5	0,1	
R8 1 PT	31,1	55	7-1	دردد	0,1	
	25.0		55,4	EE A	0.0	
Ovest	35,6			55,4	0,0	
R8 1			55,4			
PS1Ovest	35,9		33,4	55,4	0,0	
R9 1 PT			FF 4			
N/O	39,1		55,4	55,5	0,1	
R10 1 PT		944964	99.570.700			
N/O	36,7	45	55,4	55,5	0,1	
	30,1	i i	-	22,3	0,1	
R10 1	45.0		55,4	55.0	0.4	
PS1N/O	45,0			55,8	0,4	
R11 1 PT	V.163-271-106		56,2	10 (April 1970)	500.000	
N/O	33,8		30,2	56,2	0,0	
R11 1	3		56.3	•	(4)	
PS1N/O	34,1		56,2	56,2	0,0	
R12 1 PT						
N/O	29,0		56,2	56,2	0,0	
	25,0	9		30,2	0,0	
R13 1 PT			56,2			
S/O	27,4		Since Const	56,2	0,0	
R14 1 PT			56,2			
S/E	29,7		30,2	56,2	0,0	
R14 1	200	FF	F.C.3	157		
PS1S/E	30,7	55	56,2	56,2	0,0	
R15 1 PT	1	ÿ			-1-	
S/E	28,1		56,2	56,2	0,0	
	20,1		7.0	30,2	0,0	
R15 1			56,2			
PS1S/E	30,4		- 3	56,2	0,0	
R16 1		Î	56,8	,	21	
PS1S/E	20.2	1	50,0	56,8	0,0	
/-	29,3	3				
	29,3		50.0			
R16 1			56,8	56.8	0.0	
R16 1 PS2S/E	31,7			56,8	0,0	
R16 1 PS2S/E R16* 1	31,7		56,8 56,8	· · · · · · · · · · · · · · · · · · ·		
R16 1 PS2S/E R16* 1 PT Est				56,8 56,8	0,0	
R16 1 PS2S/E R16* 1 PT Est R17 1 PT	31,7 29,2		56,8	56,8	0,0	
R16 1 PS2S/E R16* 1 PT Est R17 1 PT S/E	31,7			· · · · · · · · · · · · · · · · · · ·		
R16 1 PS2S/E R16* 1 PT Est R17 1 PT S/E R18 1 PT	31,7 29,2 26,8	45	56,8 56,8	56,8 56,8	0,0	
R16 1 PS2S/E R16* 1 PT Est R17 1 PT S/E	31,7 29,2	45	56,8	56,8	0,0	
R16 1 PS2S/E R16* 1 PT Est R17 1 PT S/E R18 1 PT	31,7 29,2 26,8	45	56,8 56,8	56,8 56,8	0,0	

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto

acustico e relativi allegati

La mappa tematica delle simulazioni viene riportata nell'elaborato "Tavole Valutazione di Impatto

Acustico".

Dalle simulazioni effettuate con i presidi di mitigazione acustica di cui al paragrafo 7.2, emerge il

rispetto dei limiti.

Traffico indotto in fase di cantiere ed esercizio:

Per quanto riguarda il traffico da cantiere, dalla disamina degli areali di propagazione degli assi viari,

sia per le provenienze da NORD che da SUD, sia in ingresso che in uscita dal cantiere, si stimano impatti

molto esigui in un intorno di valori che va dai 45 ai 55 dB(A);

Per quanto riguarda la fase di esercizio sia per le provenienze da NORD che da SUD, sia in ingresso che

in uscita dall'impianto, si stimano impatti in un intorno di valori che va dai 50 ai 60 dB(A).

E' da evidenziare che il contributo dei mezzi da e verso il cantiere e da e verso l'impianto in esercizio

impatta minimamente sulle attuali condizioni. Infatti è da considerare la sola tangenziale di Napoli con

le sue connessioni con il sistema autostradale regionale, attraverso l'apertura della SS162, è

interessata da un volume complessivo di quasi 300.000 veicoli (fonte PGTU aggiornamento 2002-2004

del Comune di Napoli).

Realizzazione dell'impianto di compostaggio

con recupero di biometano da realizzare nell'area di Napoli Est - Ponticelli

PROGETTO DEFINITIVO - Allegato 6 allo Studio di Impatto Ambientale (SIA) - Valutazione previsionale impatto acustico e relativi allegati

9 CONCLUSIONI

La Valutazione Previsionale di Impatto Acustico per la realizzazione dell'impianto di compostaggio con recupero di biometano da realizzare nell'area di Napoli Est – Ponticelli, condotta con le modalità descritte in relazione ha evidenziato un superamento dei limiti in alcune fasi di cantiere, pertanto trattandosi di un cantiere temporaneo rientrante nella fattispecie disciplinata dalla legge 447/1995 Art.6, comma 1, lettera h, si provvederà a richiedere idonea deroga acustica all'ufficio competente del comune di Napoli;

Per quanto riguarda la fase di esercizio dell'impianto adottando i presidi di mitigazione di cui al paragrafo 7.2, non emergono previsionalmente superamento dei limiti.

Il contributo del traffico da e verso cantiere e da e verso impianto, sia dalla provenienza NORD, che dalla provenienza SUD, risulta trascurabile.

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora Srl

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 Tel 0823-351196 - Fax 0823-1872083 www.sonorasri.com - sonora@sonorasri.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 185/6887

Certificate of Calibration

Pagina 1 di 5 Page 1 of 5

- Data di Emissione:

date of Issue

2017/09/19

- cliente

- customer

SONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

- destinatario

S ONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

- richiesta

282/17

- in data

2017/09/13

- Si riferisce a: Referring to

- oggetto

Calibratore

- costruttore

Norsonic

- modello

1251

- matricola

34452

- data delle misure

2017/09/19

- registro di laboratorio laboratory reference

Il presente certificato di taratura è emesso in base all'accreditamento LAT N. 185 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT No. 185 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro

Buther Ernest Monaca Qo

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora Srl

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 Tel 0823-351196 - Fax 0823-1872083 www.sonorasrl.com - sonora@sonorasrl.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 185/6887

Certificate of Calibration

Pagina 2 di 5 Page 2 of 5

Di seguito vengono riportate le seguenti informazioni: In the following information is reported about:

- la descrizione dell'oggetto in taratura (se necessaria);
 description of the item to be calibrated (if necessary);
- l'identificazione delle procedure in base alle quali sono state eseguite le tarature;
- technical procedures used for calibration performed;
- i campioni di prima linea da cui ha inizio la catena della riferibilità del Centro; reference standards from which traceability chain is originated in the Centre;
- gli estremi dei certificati di taratura di tali campioni e l'Ente che li ha emessi;
- the relevant calibration certificates of those standards with the issuing Body;
- luogo di taratura (se effettuata fuori dal laboratorio);
- site of calibration (if different from the Laboratory);
- condizioni ambientali e di taratura;
- calibration and environmental conditions;
- i risultati delle tarature e la loro incertezza estesa. calibration results and their expanded uncertainty.

Strumenti sottoposti a verifica

Instrumentation under test

Strumento

Costruttore

Modello

Serie/Matricola 34452

Classe Classe 1

Calibratore

Norsonic

1251

Normative e prove utilizzate

Standards and used tests

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure : Calibratori - PR 4 - Rev. 3/2005 The measurement result reported in this Certificate were obtained following the Procedures:

Il gruppo di strumenti analizzato è stato verificato seguendo le normative: IEC 60942 - IEC 60942 - CEI EN 60942 The devices under test was calibrated following the Standards:

Catena di Riferibilità e Campioni di Prima Linea - Strumentazione utilizzata per la taratura

Traceability and First Line Standards - Instrumentation used for the measurements

Strumento	Linea	Marca e modello	N. Serie	Certificato N	Data Emice	Ente validante
Microfono Campione Pistonofono Campione Multimetro Barometro Generatore Attenuatore Analizzatore FFT Attuatore Elettrostatico Preamplificatore Insert Voltage Alimentatore Microfonico Termigrometro	f° f° f° 2° 2° 2° 2° 2°	Marca e modello B&K 4180 GRAS 42AA Agilent 34401A Druck DPI 142 Stanford Research DS360 ASIC 1001 NI 4474 Gras 14AA Gras 26AG Gras 12AA Testo 615	N. Serie 24/2860 43946 MY4/043722 2125275 61/01 C 1001 189545A-01 33941 28630 40264	Certificato N. 17-0081-01 15-0067-02 LAT 019 48810 0094-SP-17 LAT 185/6723 LAT 185/6724 LAT 185/6725 LAT 185/6726 LAT 185/6727 LAT 185/6727	17/02/02 15/02/04 17/02/02 17/02/02 17/07/06 17/07/06 17/07/06 17/07/06 17/07/06 17/07/06 17/07/06	Ente validante INRIM INRIM AVIATRONIK WKA SONORA - PR 7 SONORA - PR 8 SONORA - PR 10 SONORA - PR 11 SONORA - PR 11 SONORA - PR 12
Calibrato re Multifunzio ne	Aux	B&K 4226	00857902 2433645	LAT 123/17SU0051 LAT 185/6730	17/01/31 17/07/06	CAMAR SONORA - PR 5

Capacità metrologiche ed incertezze del Centro

Metrological abilities and uncertainties of the Centre

L'Operatore

Il Responsabile del Centro

Prince thesio Novison Qo

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora Srl

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 Tel 0823-351196 - Fax 0823-1872083 www.sonorasri.com - sonora@sonorasri.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 185/6887

Certificate of Calibration

Pagina 3 di 5 Page 3 of 5

Condizioni ambientali durante la misura

Environmental parameters during measurements

Pressione Atmosferica 1003,4 hPa ± 0,5 hPa Temperatura Umidità Relativa

24,2 °C ± 1,0°C

49,9 UR% ± 3 UR%

(rif. $1013,3 \text{ hPa} \pm 20,0 \text{ hPa}$) (rif. 23,0 °C ± 3,0 °C) (rif. 50,0 UR% ± 10,0 UR%)

Modalità di esecuzione delle Prove

Directions for the testings

Sugli elementi sotto verifica vengono eseguite misure acustiche ed elettriche. Le prove acustiche vengono effettuate tenendo conto delle condizioni fisiche al contorno e dopo un adeguato tempo di acclimatamento e preriscaldamento degli strumenti. Le prove elettriche vengono invece eseguite utilizzando adattatori capacitivi di adeguata impedenza. Le unità di misura "dB" utilizzate nel presente certificato sono valori di pressione assoluta riferiti a 20 microPa.

Elenco delle Prove effettuate

Test List

Nelle pagine successive sono descritte le singole prove nei loro dettagli esecutivi e vengono indicati i parametri di prova utilizzati, i risultati ottenuti, le deviazioni riscontrate, gli scostamenti e le tolleranze ammesse dalla normativa considerata.

Codice	Denominazione	Revisione	Categoria	Complesse	Incertezza	Esito
-	Ispezione Preliminare	2011-05	Generale	Compresso		
-	Rilevamento Ambiente di Misura	2011-05	Generale		-	Superata
PR 5.03	Verifica della Frequenza Generata 1/1		Constitution and an artist of			Superata
PR 5.01	Pressione Acustica Generata	2004-03	Acustica	C	0,010,02 %	Classe 1
		2004-03	Acustica	C	0,000,12 dB	Classe 1
PR 5.05	Distorsione del Segnale Generato (THD+N)	2004-03	Acustica	C	0,420,42 %	Classe 1
10.8	Indice di Compatibilità (C/M)	2011-05	Acustica	C		Non utilizzata

Dichiarazioni Specifiche per la Norma 60942:2003

- Per l'esecuzione della verifica periodica sono state utilizzate le procedure della Norma IEC 60942:2004-03.
- Non esiste documentazione pubblica comprovante che il calibratore ha superato le prove di valutazione di Modello applicabili della IEC 60942:2003 Annex A.
- Il calibratore acustico ha dimostrato la conformità con le prescrizioni della Classe 1 per le prove periodiche descritte nell'Allegato B della IEC 60942:2003 per il/i livelli di pressione acustica e la/le frequenze indicate alle condizioni ambientali in cui sono state effettuate le prove. Tuttavia, non essendo disponibile una dichiarazione ufficiale di un organismo responsabile dell'approvazione del modello, per dimostrarne la conformità alle prescrizioni dell'Allegato A della IEC 60942:2003, non è possibile fare alcuna dichiarazione o trarre conclusioni relativamente alle prescrizioni della IEC 60942:2003.

L'Operatore

Il Responsabile del Centro

The Enterio Montagna

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora Srl

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 Tel 0823-351196 - Fax 0823-1872083 www.sonorasrl.com - sonora@sonorasrl.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 185/6887

Certificate of Calibration

Pagina 4 di 5 Page 4 of 5

- - Ispezione Preliminare

Verifica della integrità e della funzionalità del DUT.

Ispezione visiva e meccanica.

Impostazioni Effettuazione del preriscaldamento del DUT come prescritto dalla casa costruttrice.

Letture

Osservazione dei dettagli e verifica della conformità e del rispetto delle specifiche costruttive.

Note

Controlli Effettuati	Risultato
Ispezione Visiva	superato
Integrità meccanica	superato
Integrità funzionale (comandi, indicatore)	superato
Stato delle batterie, sorgente alimentazione	superato
Stabilizzazione termica	superato
Integrità Accessori	superato
Marcatura (min. marca, modello, s/n)	superato
Manuale Istruzioni	superato
Stato Strumento	Condizioni Buone

- - Rilevamento Ambiente di Misura

Rilevamento dei parametri fisici dell'ambiente di misura.

Descrizione Letture dei valori di Pressione Atmosferica Locale, Temperatura ed Umidità Relativa del laboratorio.

Impostazioni Attivazione degli strumenti strumenti necessari per le misure.

Letture

Letture effettuate direttamente sugli strumenti (barometro, termometro ed igrometro).

Note

Riferimenti:Limiti: Patm=1013,25±20,0hpa - T aria=23,0±3,0°C - UR=50,0±10,0%

Gran dezza	
Pressione Atmosferica	
Temperatura	

Umidità Relativa

1003,4 hpa 24,2 °C 49.9 UR%

Condizioni Iniziali

Condizioni Finali

1003,4 hpa 24,3 °C 49,9 UR%

PR 5.03 - Verifica della Frequenza Generata 1/1

Scopo

Verifica della frequenza al livello di pressione acustica generato dal calibratore.

Descrizione Misurazione della frequenza del segnale proveniente dal microfono campione tramite il multimetro.

Impostazioni Collegamento della linea Microfono campione/preamplificatore/alimentatore microfonico al multimetro digitale.

Letture

Lettura diretta del valore della frequenza sul multimetro.

Note

Metodo: Frequenze Nominali Freq.Nom. @114dB Deviaz.

1kHz

1000 62 Hz

0.06 %

Toll.CI1 Toll.CI2

Incert.

ToliCittine ToliCi2tine

0,0..+1,0% 0,0..+2,0%

0.01%

0,0..+1,0 %

0,0..+2,0 %

PR 5.01 - Pressione Acustica Generata

Scopo

Determinazione dei livello di pressione acustica generato dal calibratore con il Metodo Insert Voltage.

Descrizione Fase 1: misura dell'ampiezza del segnale elettrico in uscita dalla linea Microfono campione/alimentatore a calibratore attivo. Fase 2: si inietta nel preamplificatore I.V. un segnale tramite il generatore tale da eguagliare quello letto nella fase 1. Impostazioni Collegamento della linea Microfono campione/preamplificatore/alimentatore al multimetro digitale. Selezione manuale dell'Insert Voltage tramite switch.

Letture

Livelli di tensione sul multimetro digitale nelle 2 fasi. Calcolo della pressione acustica in dB usando la sensibiltà del microfono Campione. Eventuale correzione del valore di pressione dovuta alla pressione atmosferica.

Note

L'Operatore

Mesting Drugsto MONTATO

Il Responsabile del Centro

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora Srl

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 Tel 0823-351196 - Fax 0823-1872083 www.sonorasrl.com - sonora@sonorasrl.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI TARATURA LAT 185/6887

Certificate of Calibration

Pagina 5 di 5 Page 5 of 5

Metodo: Insert Voltage - Correzione Totale: -0,004 dB

F Esatta Liv114dB Deviaz.

1000,62 Hz 114,00 dB 0,00 dB Incert. Toll.Cl1 Toll.Cl2 0,12 dB 0,00..+0,40 0,00..+0,60

TollCl1±inc 0,00..+0,28 dB

PR 5.05 - Distorsione del Segnale Generato (THD+N)

Determinazione della Distorsione Armonica Totale (THD+N) al livello di pressione acustica generato dal calibratore.

Descrizione

Tramite analizzatore di spettro si verifica che il rapporto tra la somma dei livelli delle bande laterali e delle armoniche con il livello del segnale principale sia inferiore alla tolleranza stabilita.
Impostazioni Selezione del livello e della frequenza sul calibratore. Collegamento della linea Microfono campione/preamplificatore/alimentatore all'analizzatore FFT.

Letture

Campionamento degli spettri con l'analizzatore FFT e calcolo della THD.

Note

1kHz

Metodo: Frequenze Rilevate F.Nominali F.Esatte @114dB

1000,6 Hz 0,13 % Toll. Cl1 Toll. Cl2 Incert.

TollCl1±inc

0,0..+3,0 % 0,0..+4,0 % 0,42 %

0.0..+2,6%

L'Operatore

austres Mortana

Il Responsabile del Centro

Aniello SX BRALDI

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora S.r.l.

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 - Caserta Tel 0823 351196 - Fax 0823 351196 www.sonorasrl.com - sonora@sonorasrl.com

LAT Nº185

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

> Pagina 1 di 11 Page 1 of 11

CERTIFICATO DI TARATURA LAT 185/8403

Certificate of Calibration

Data di Emissione:
 date of Issue

2019/03/26

- cliente

SONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

- destinatario

SONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

- richiesta

71/19

- in data

2019/02/13

- Si riferisce a: Referring to

oggetto
 Item

Fonometro

- costruttore manufacturer Larson Davis

- modello

831

- matricola serial number

0001600

- data delle misure

2019/03/26

 registro di laboratorio laboratory reference Il presente certificato di taratura è emesso in base all'accreditamento LAT N. 185 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT No. 185 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro Head of the Centre

Ing Ballo MONACO

Calibration Centre

Laboratorio Accreditato di Taratura

Sonora S.r.l.

Servizi di Ingegneria Acustica Via dei Bersaglieri, 9 - Caserta Tel 0823 351196 - Fax 0823 351196 www.sonorasrl.com - sonora@sonorasrl.com

LAT Nº185

Membro deali Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

> Pagina 1 di 13 Page 1 of 13

CERTIFICATO DI TARATURA LAT 185/8404

Certificate of Calibration

- Data di Emissione:

date of Issue

- cliente customer

- destinatario

- richiesta

application

71/19

2019/02/13

- in data date

- Si riferisce a: Referring to

- oggetto

- costruttore manufacturei

 modello model

 matricola serial number

 data delle misure date of measurements

- registro di laboratorio laboratory reference

2019/03/26

SONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

SONICA di De Rosa Sergio Via Motta Baldascini, 131/B 80050 - S.Maria la Carità (NA)

Fonometro

Larson Davis

831

0001600 1/3Ott.

2019/03/26

Il presente certificato di taratura è emesso in base all'accreditamento LAT N. 185 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

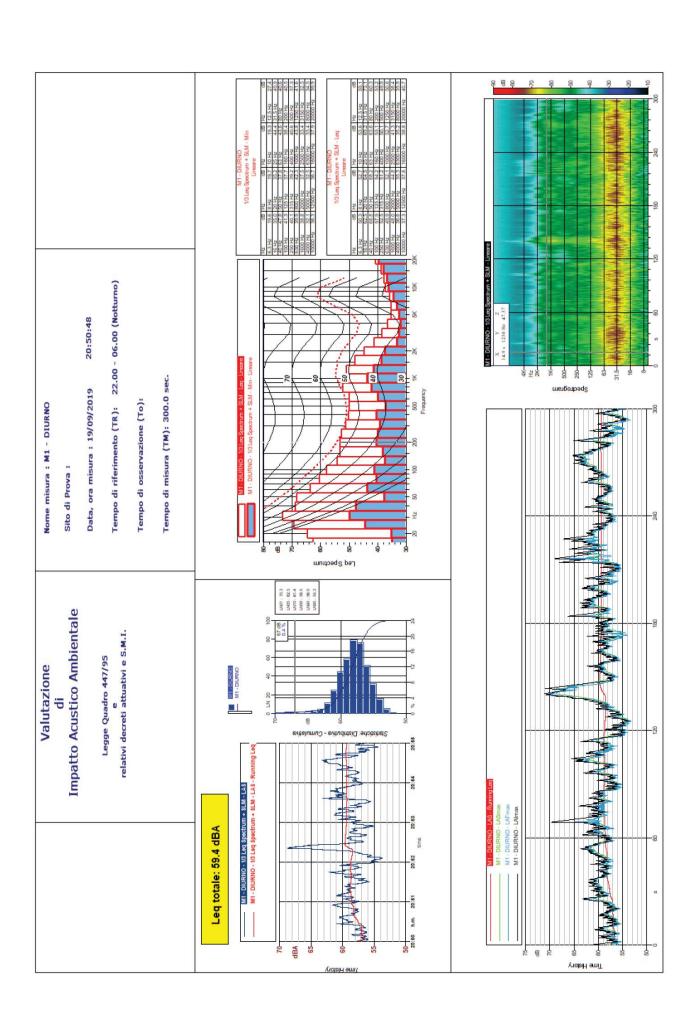
Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

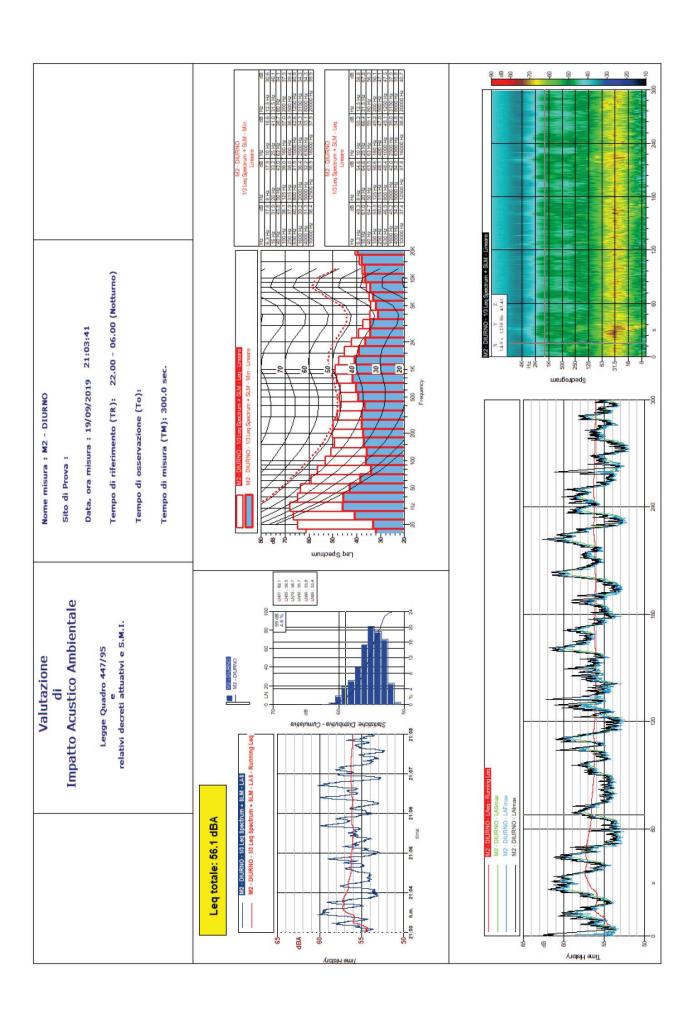
This certificate of calibration is issued in compliance with the accreditation LAT No. 185 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

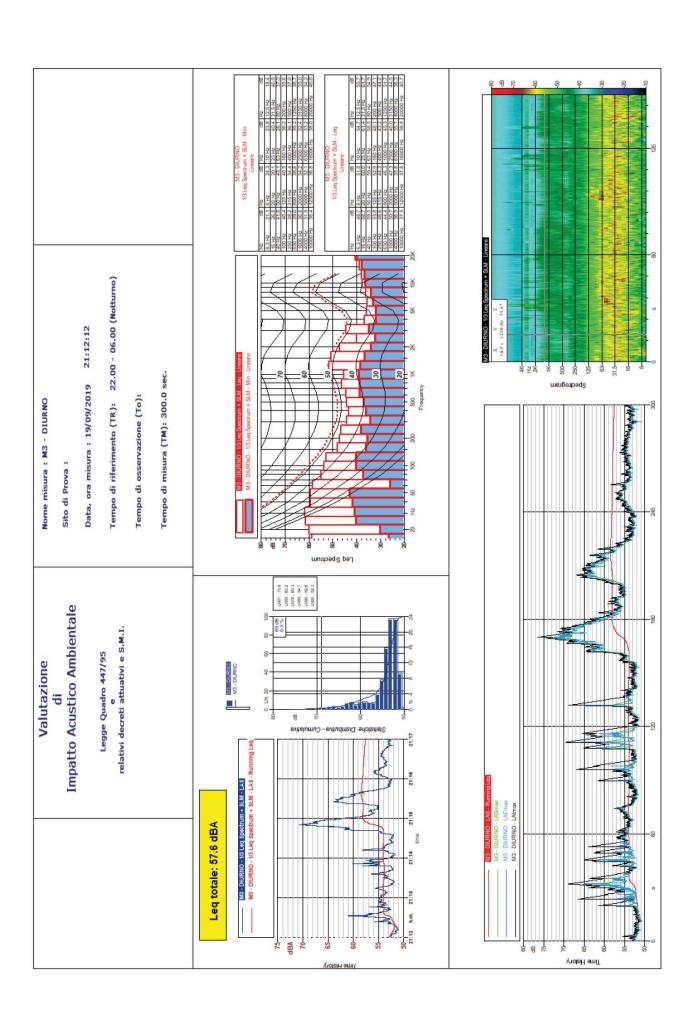
This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

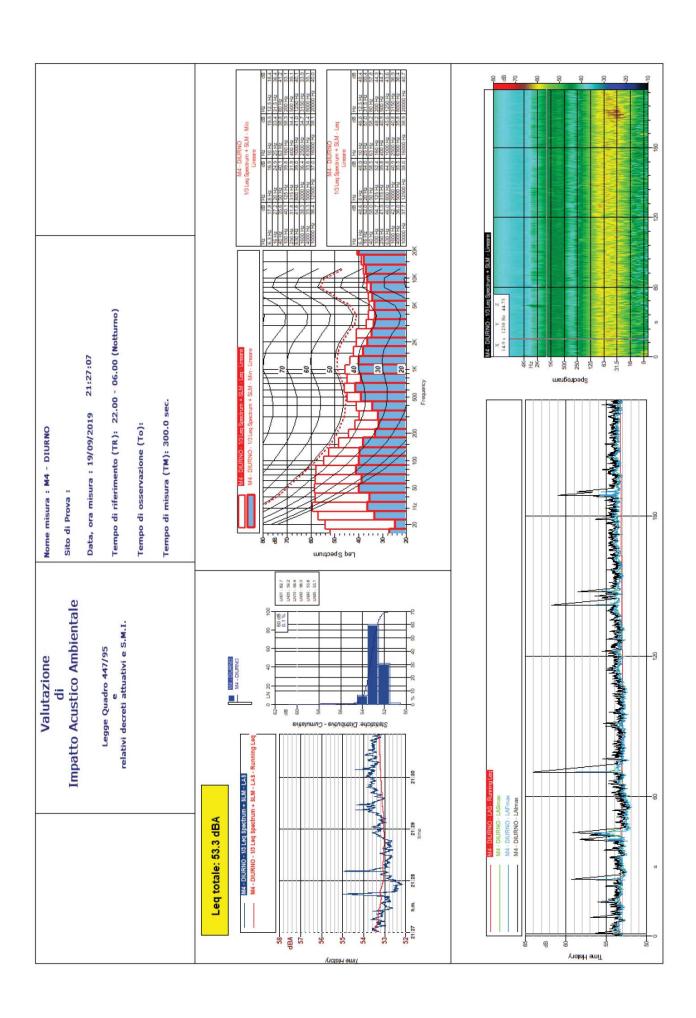
I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

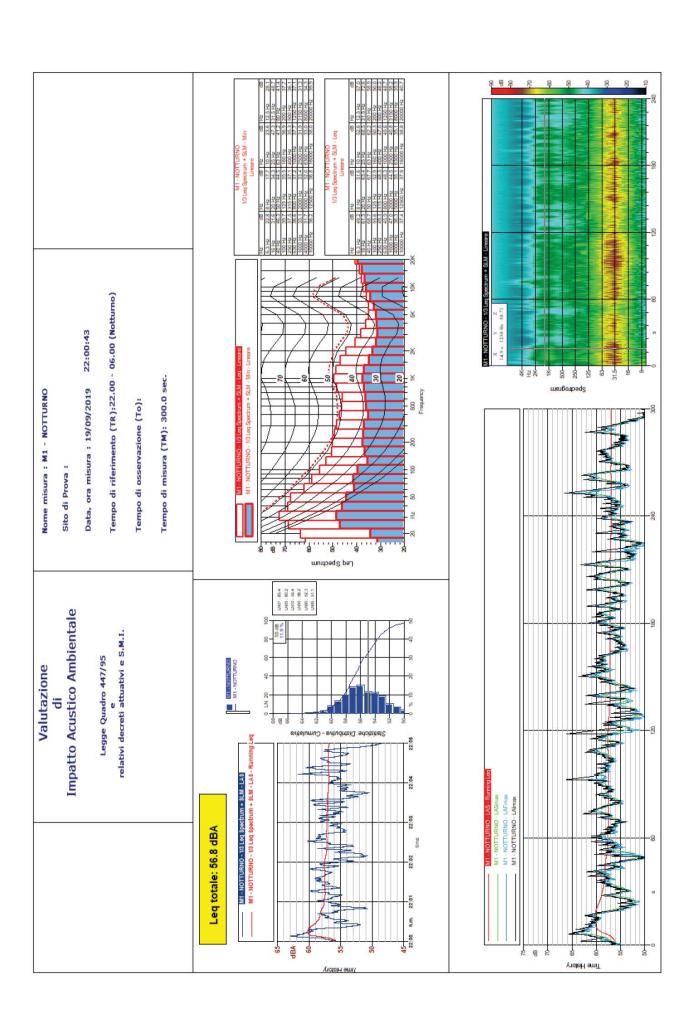
The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

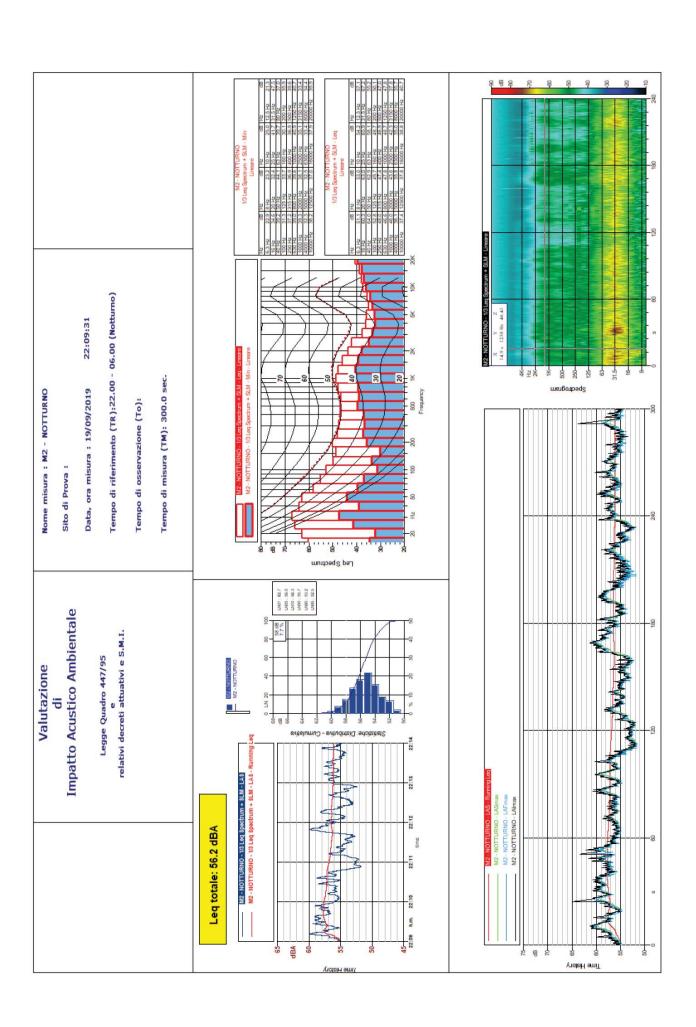

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore vale 2.

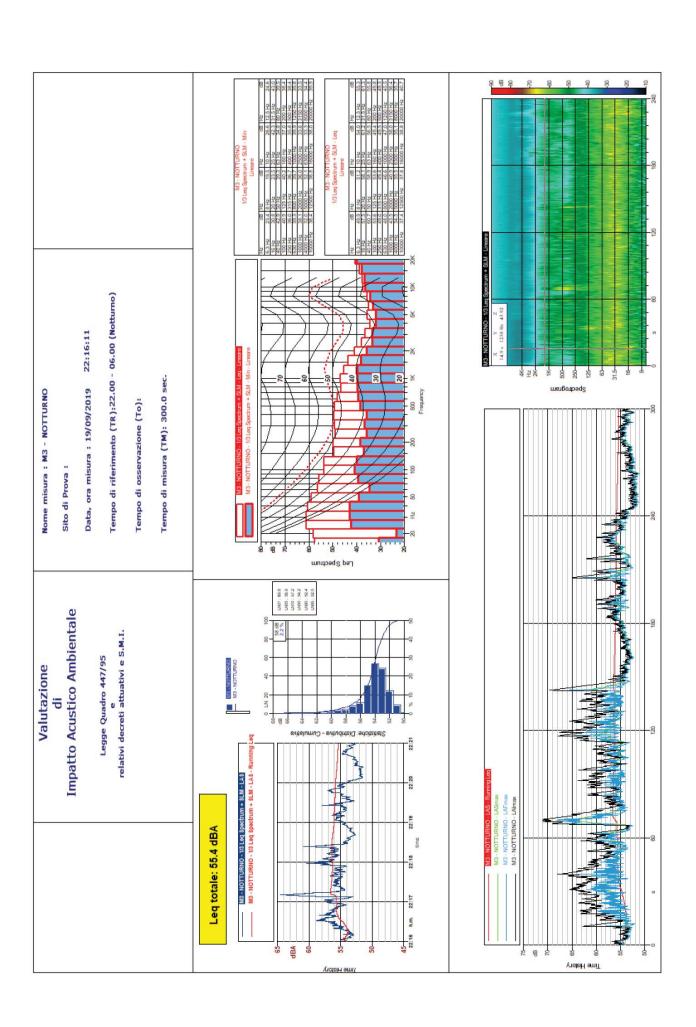

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

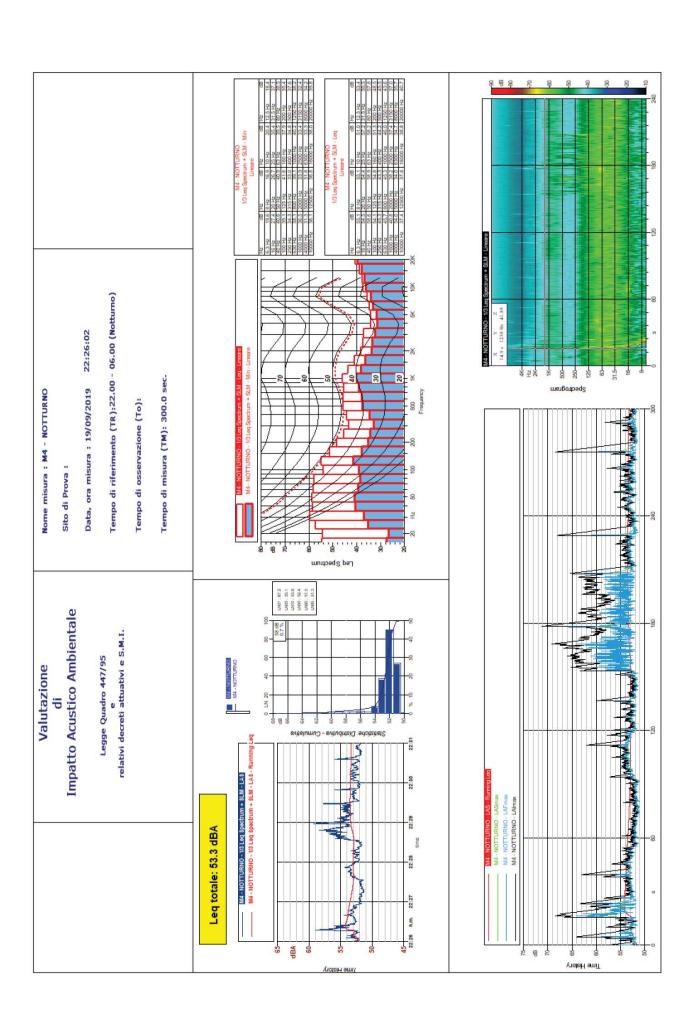
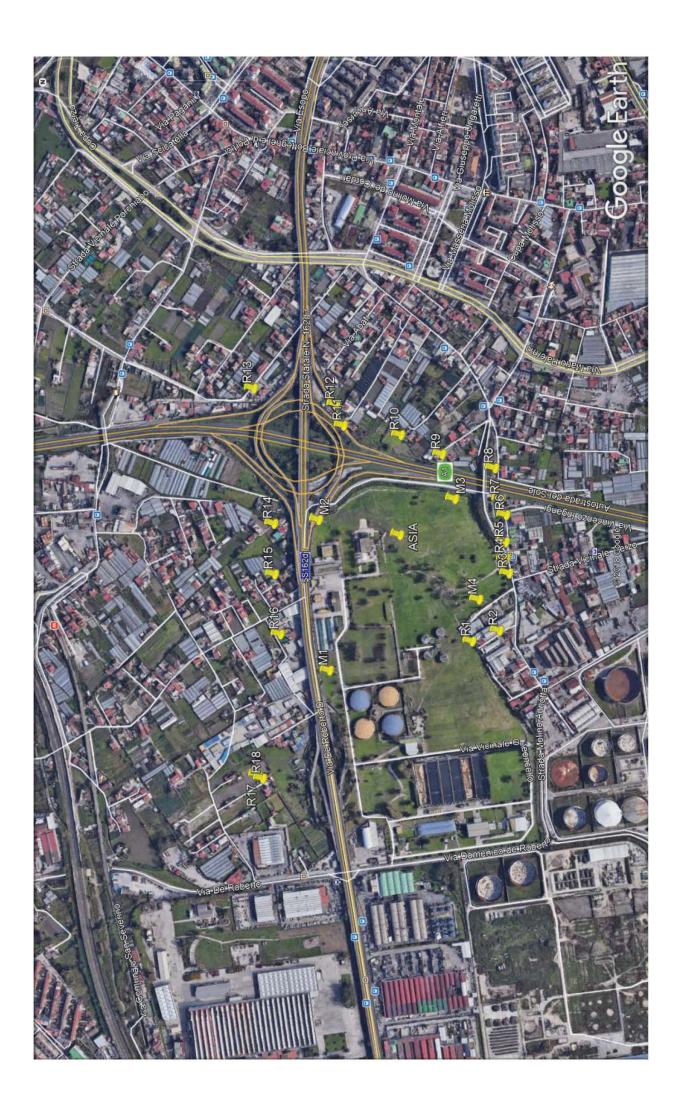
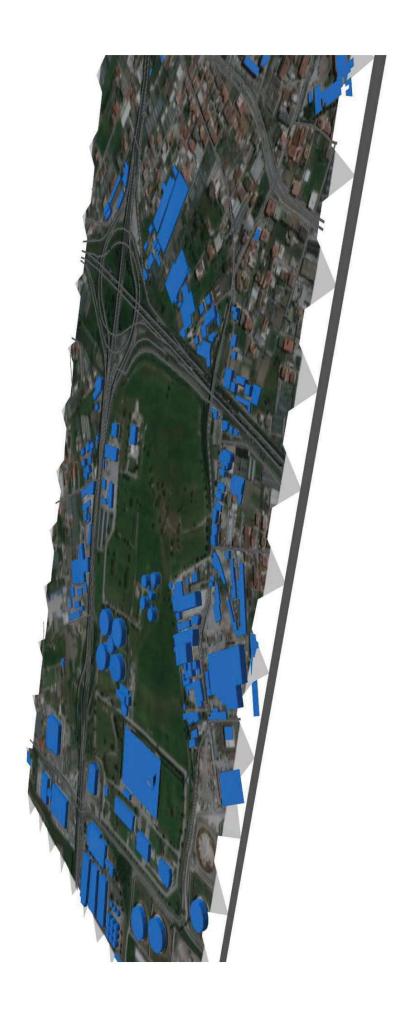
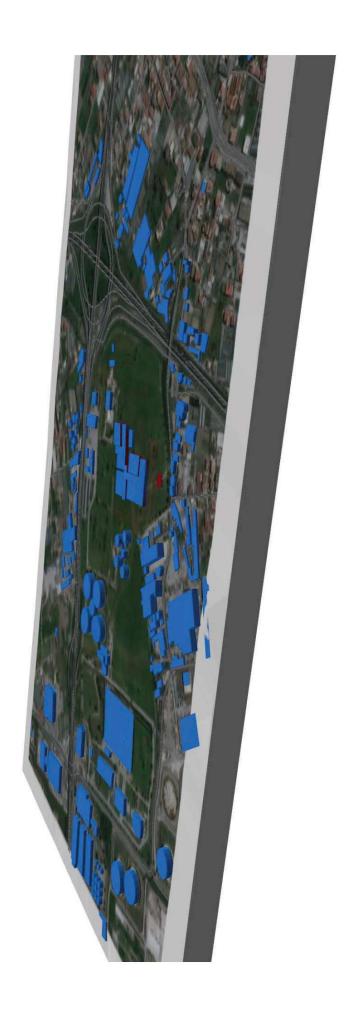

> Il Responsabile del Centro Head of the Centre

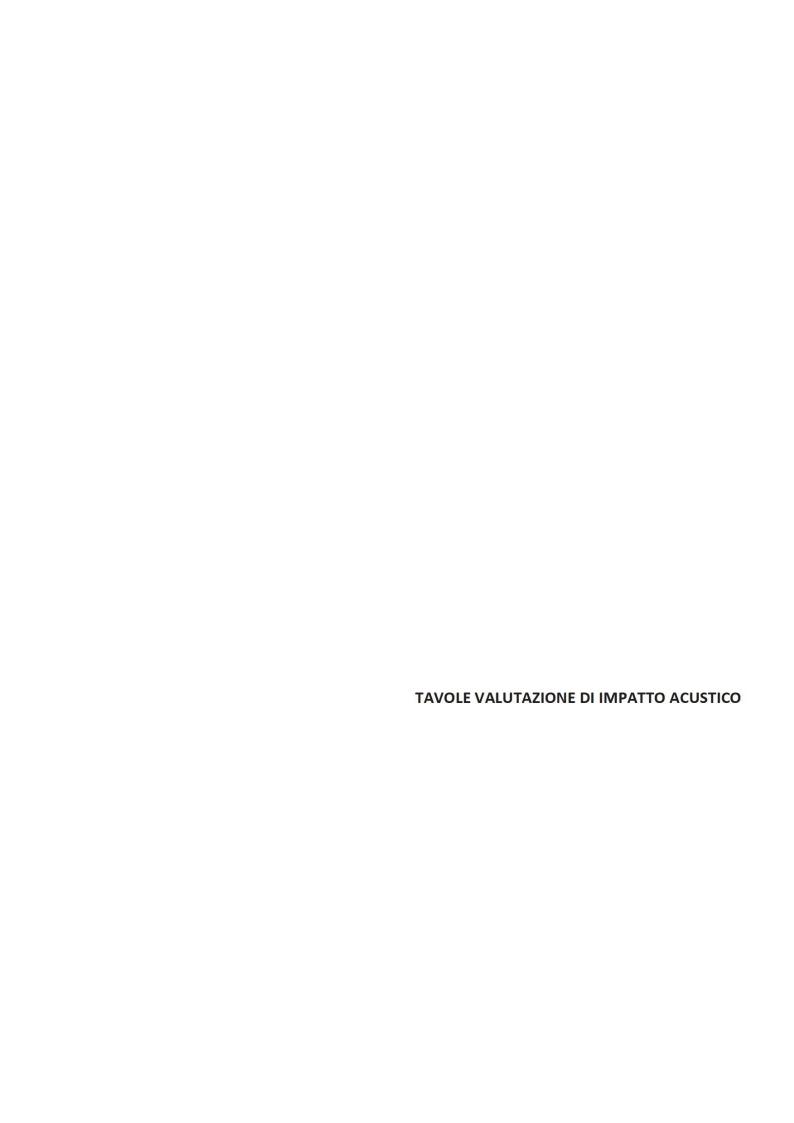

CO

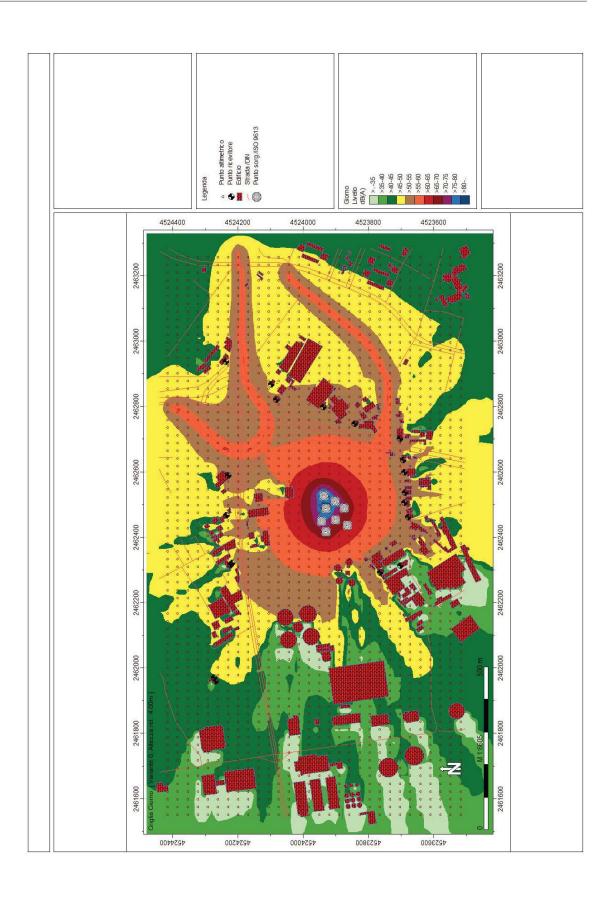

GRAFICI PROVE FONOMETRICHE

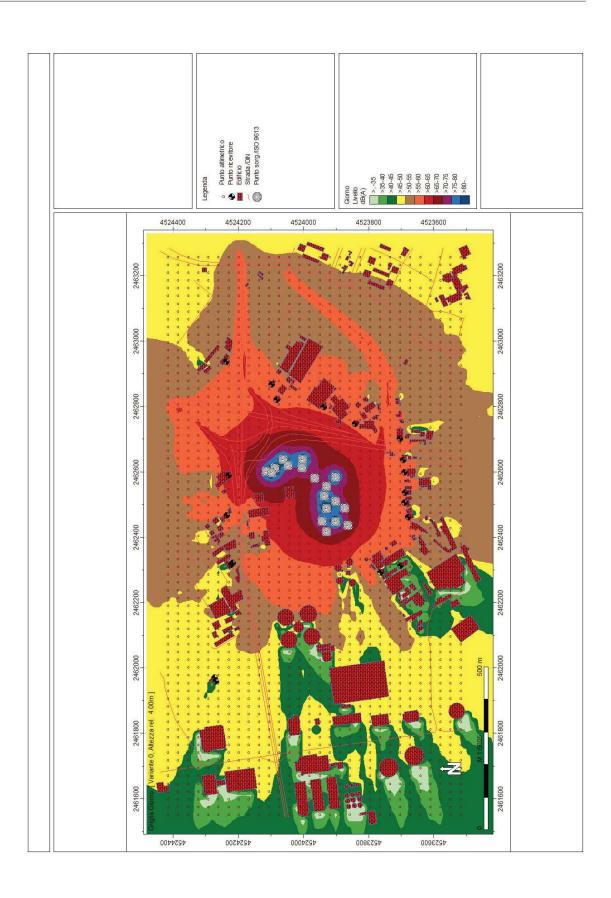


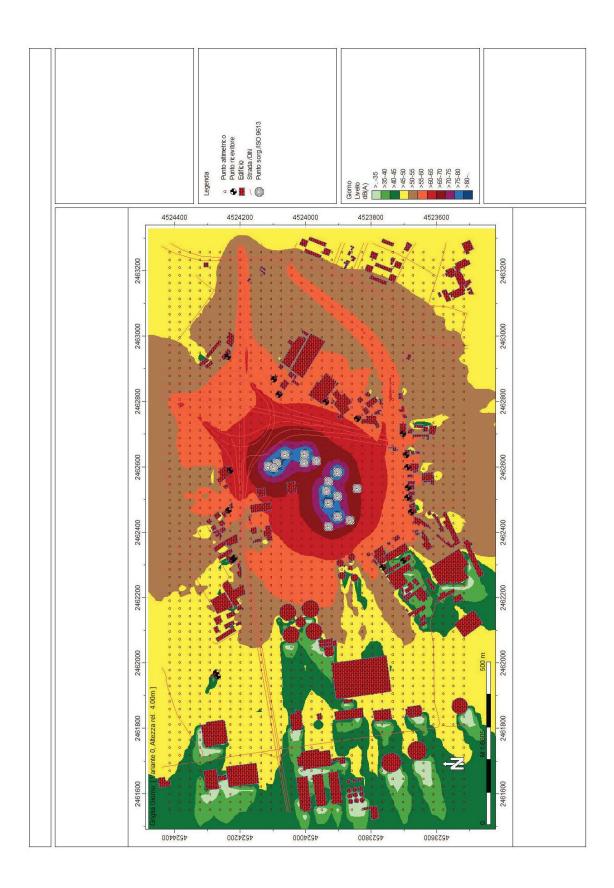


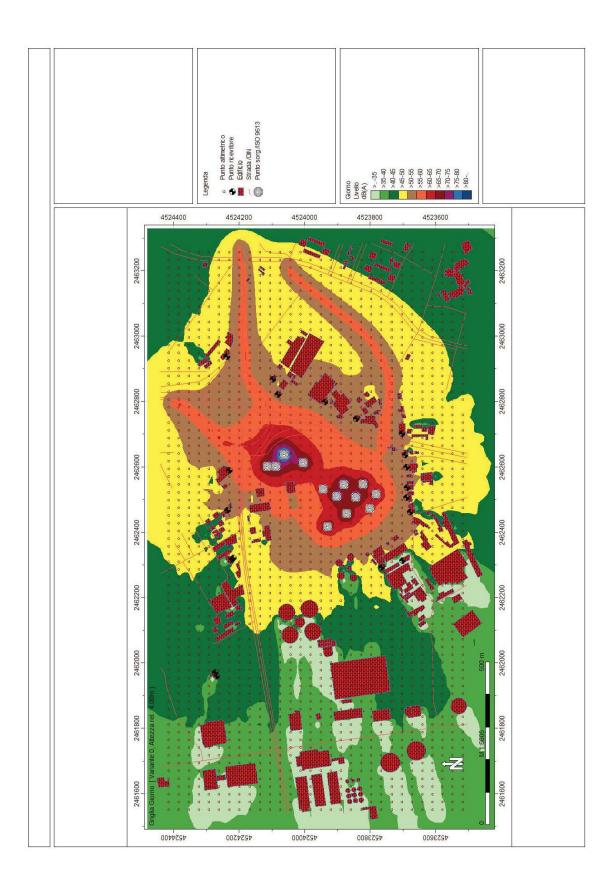





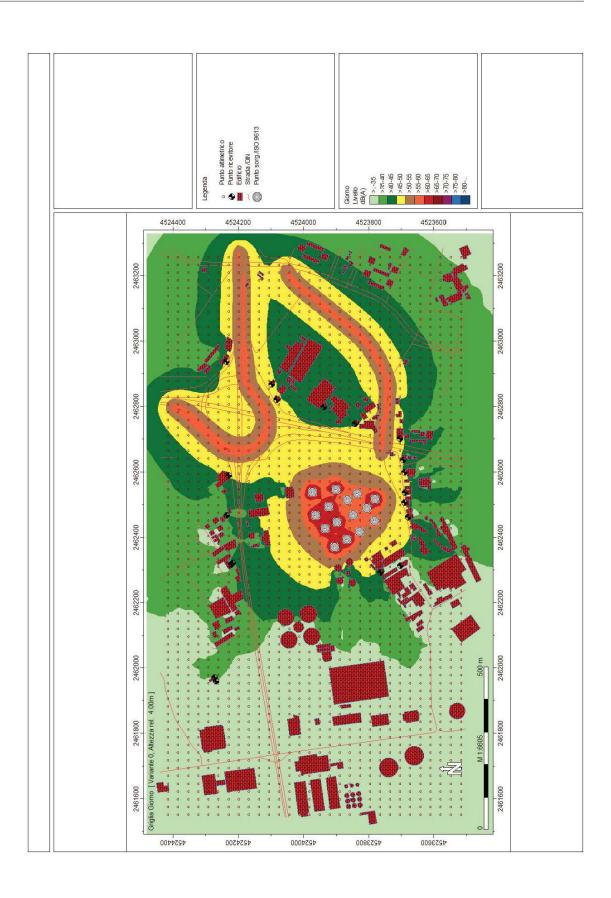

TAVOLA DEI RICETTORI

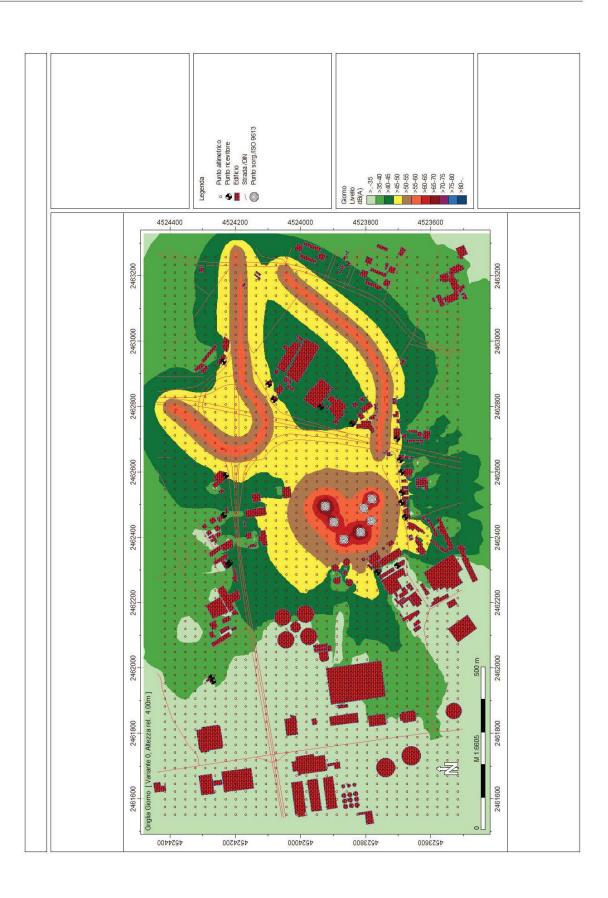


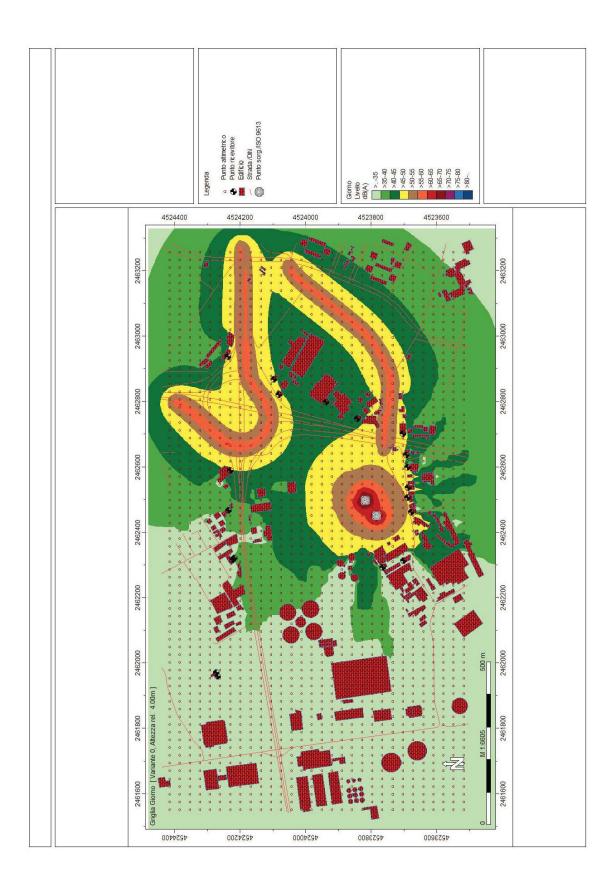

TAVOLE DTM - DBM

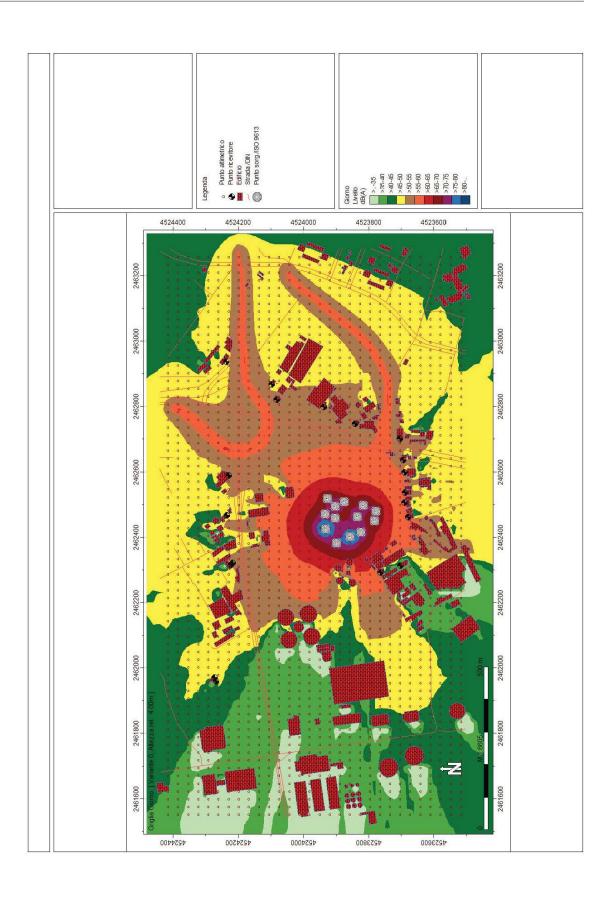


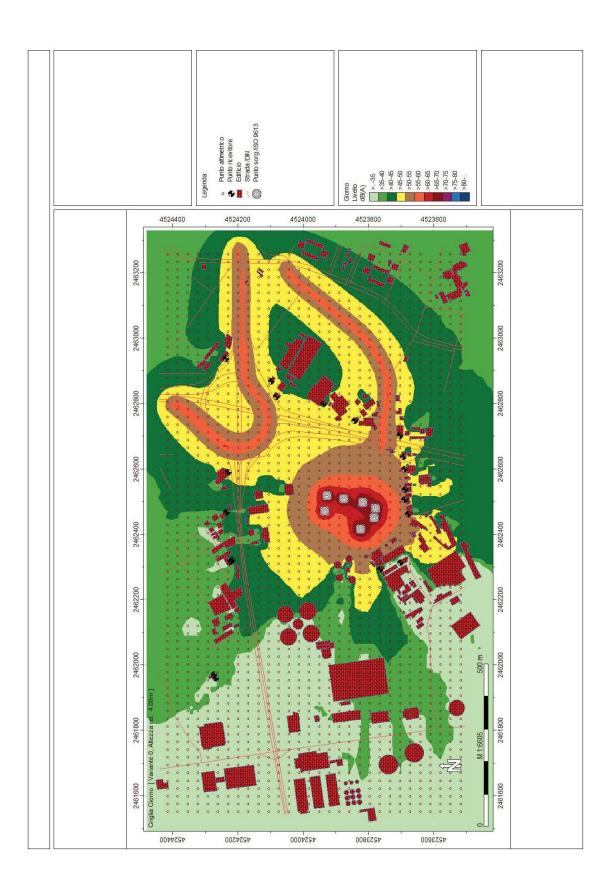


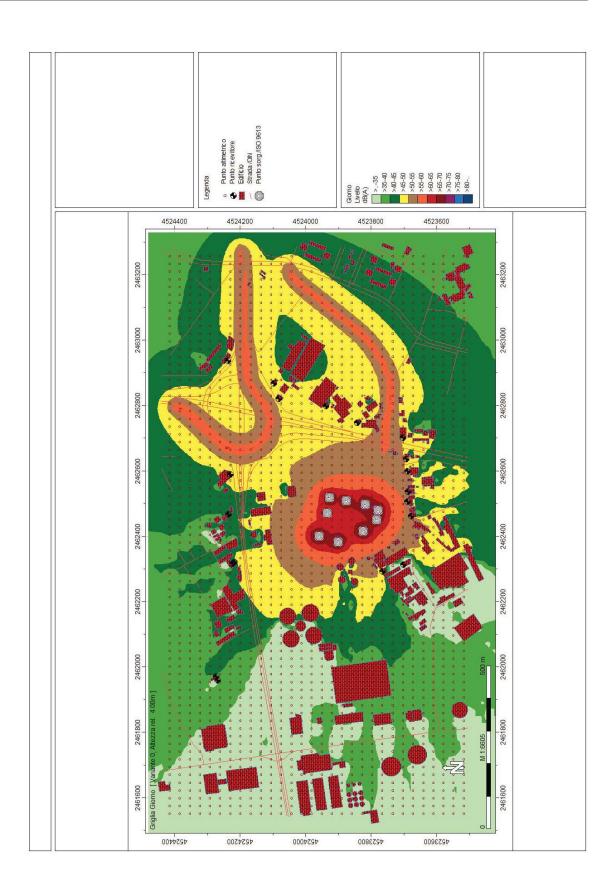


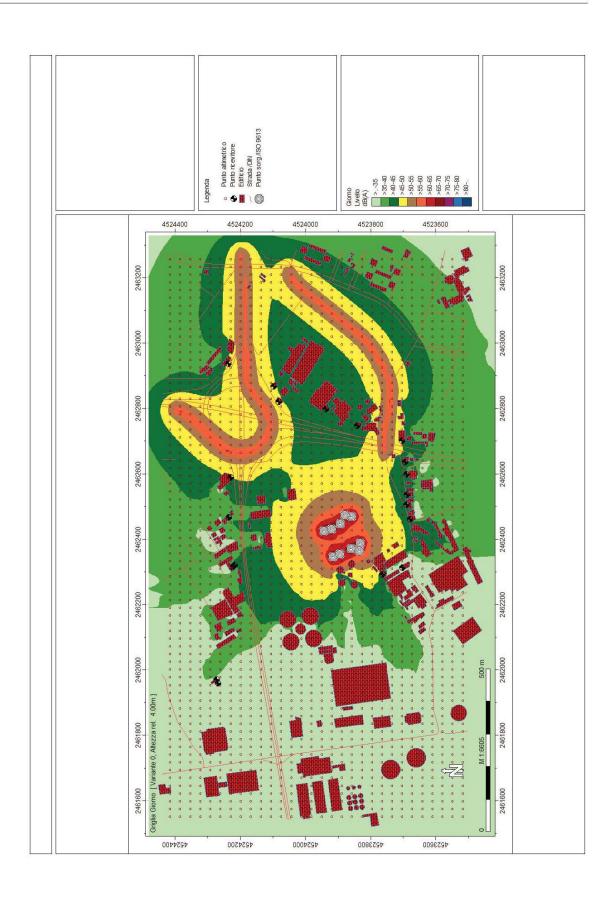


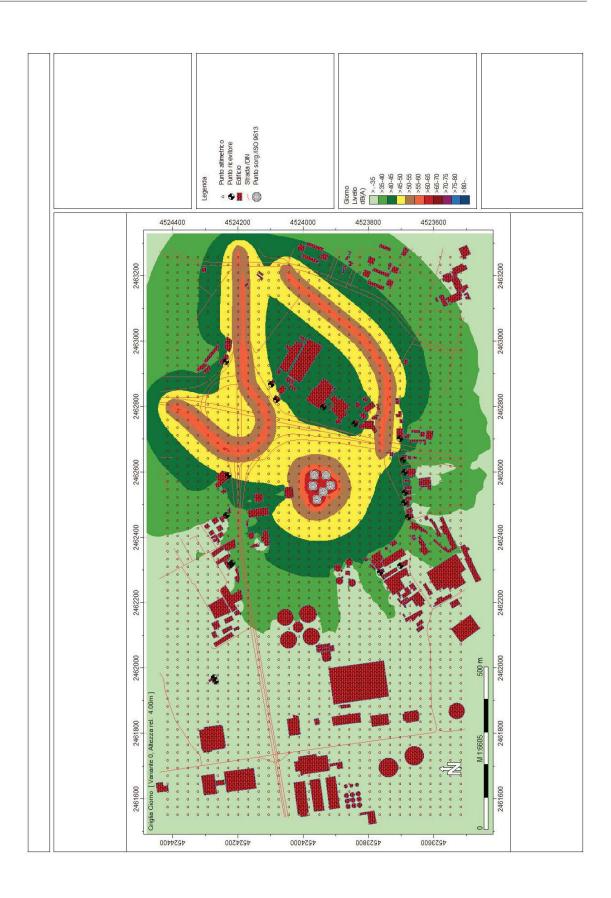


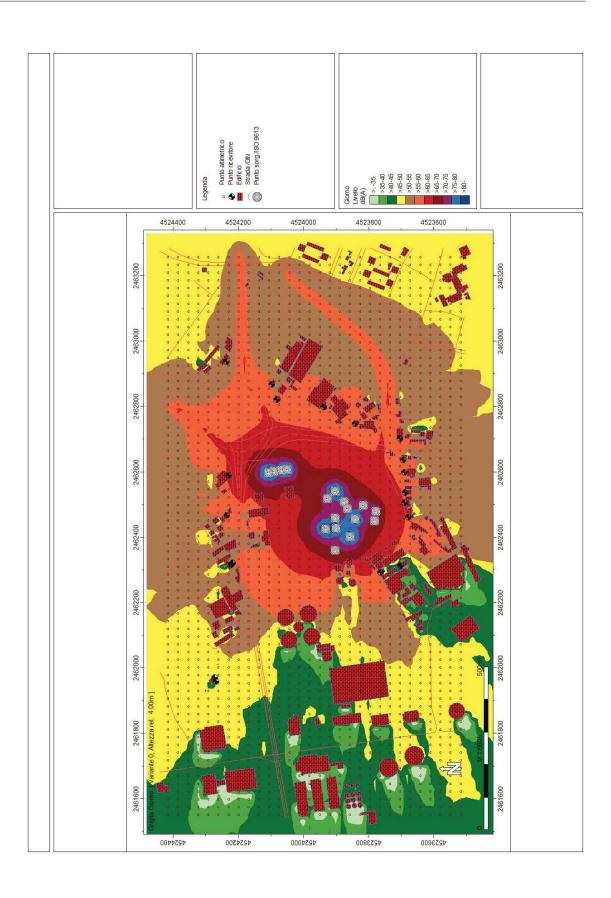


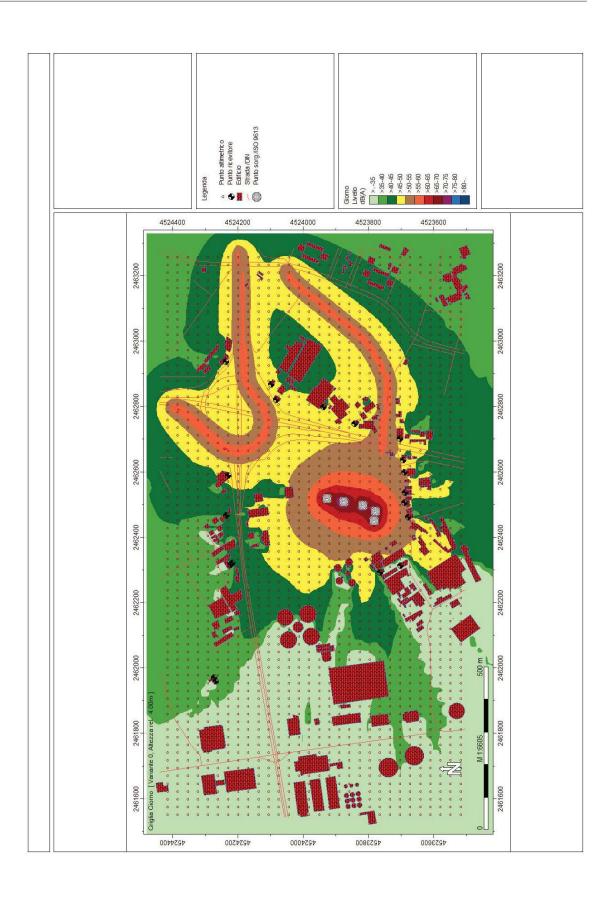


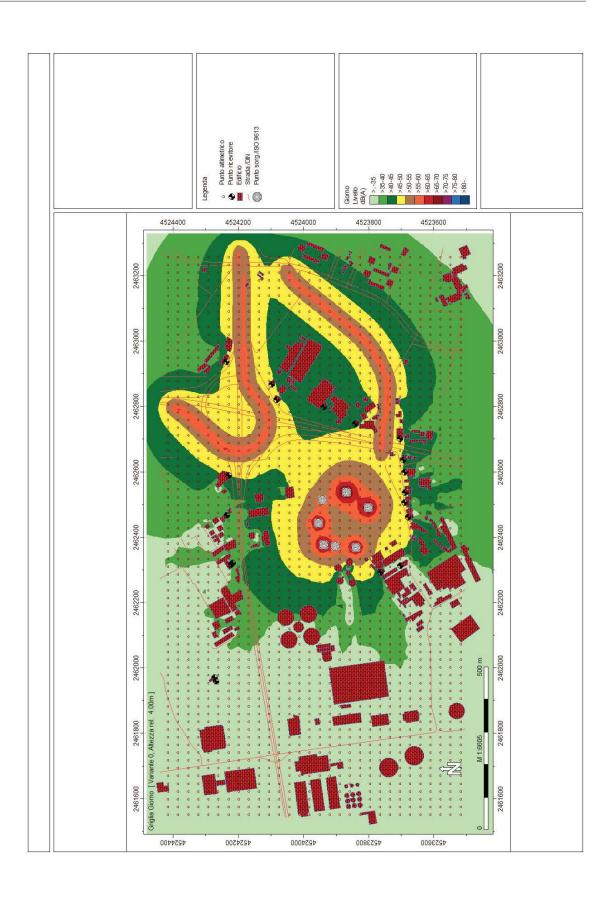


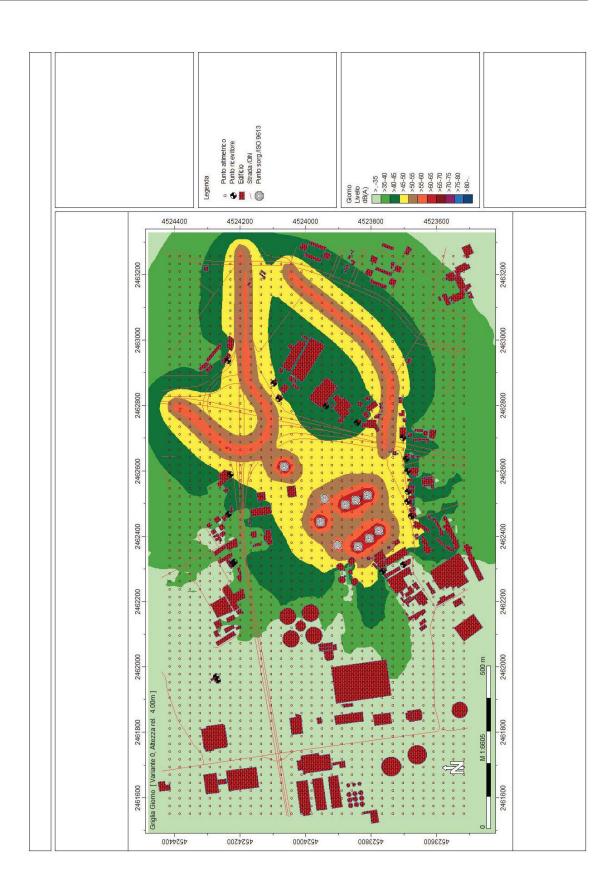


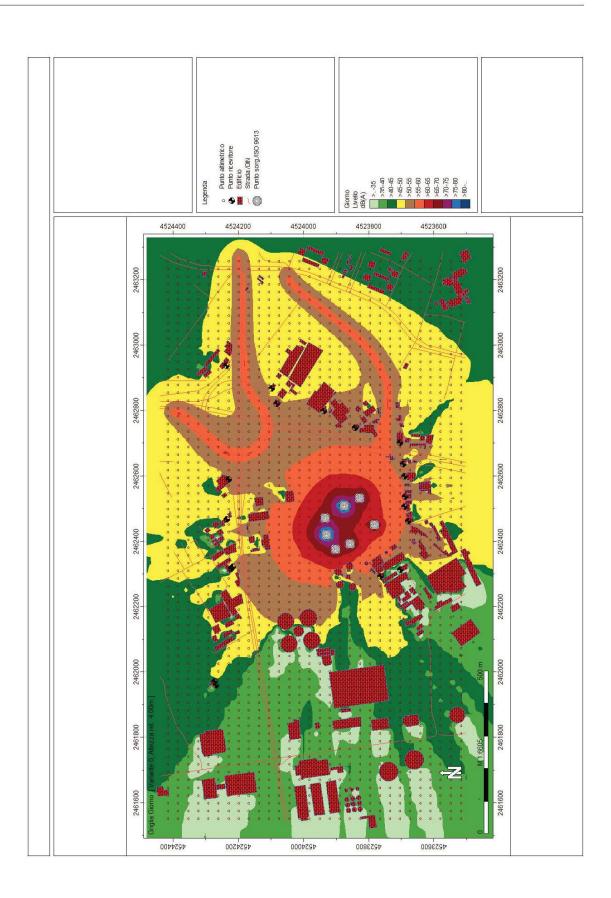


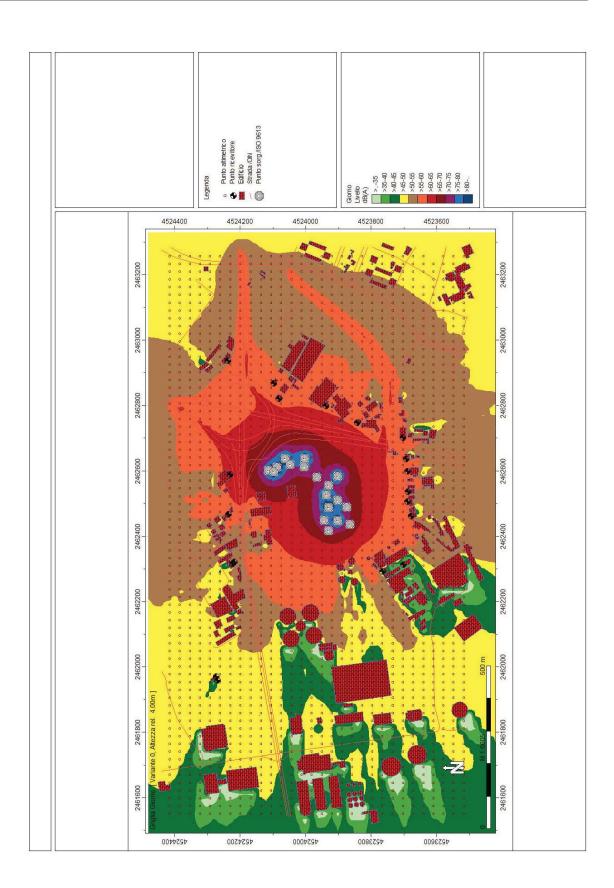


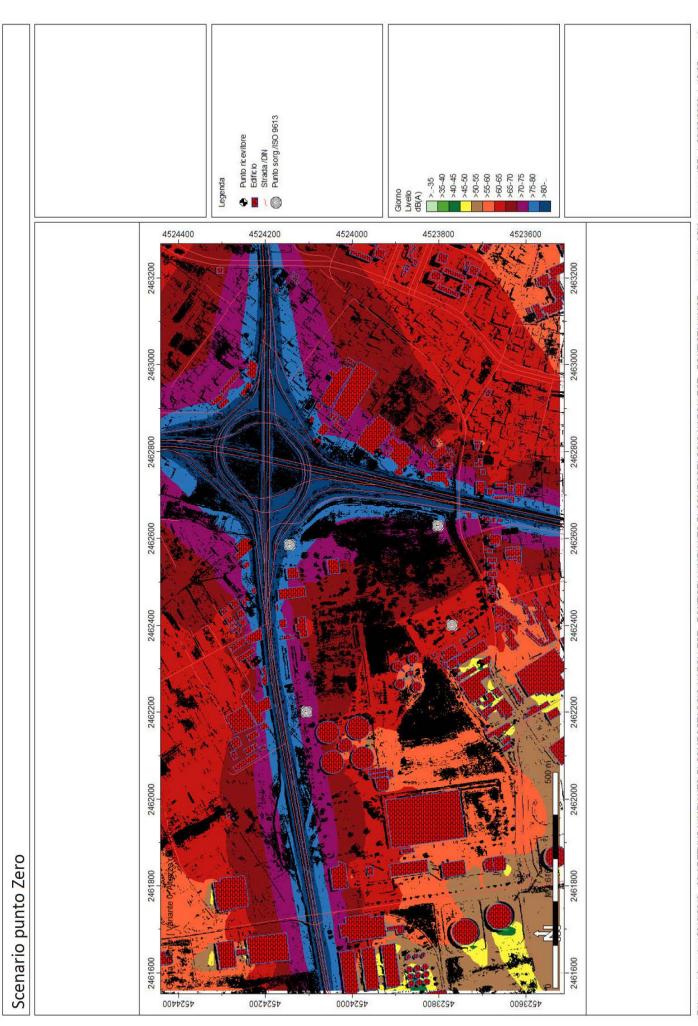


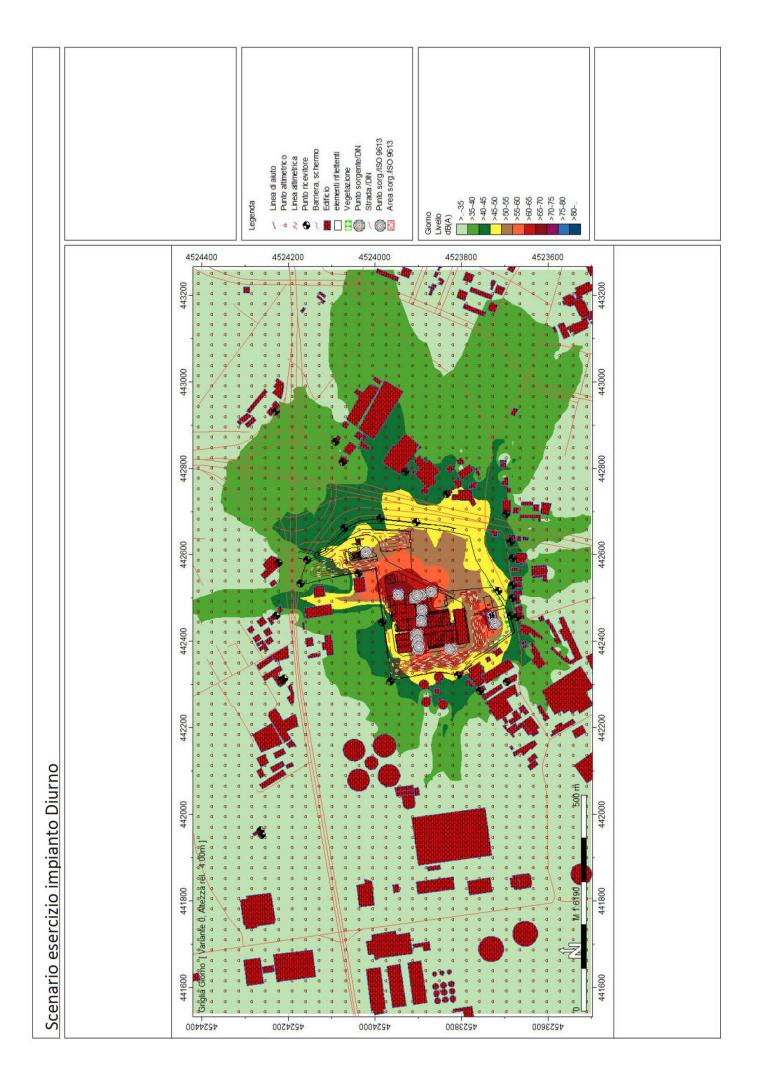


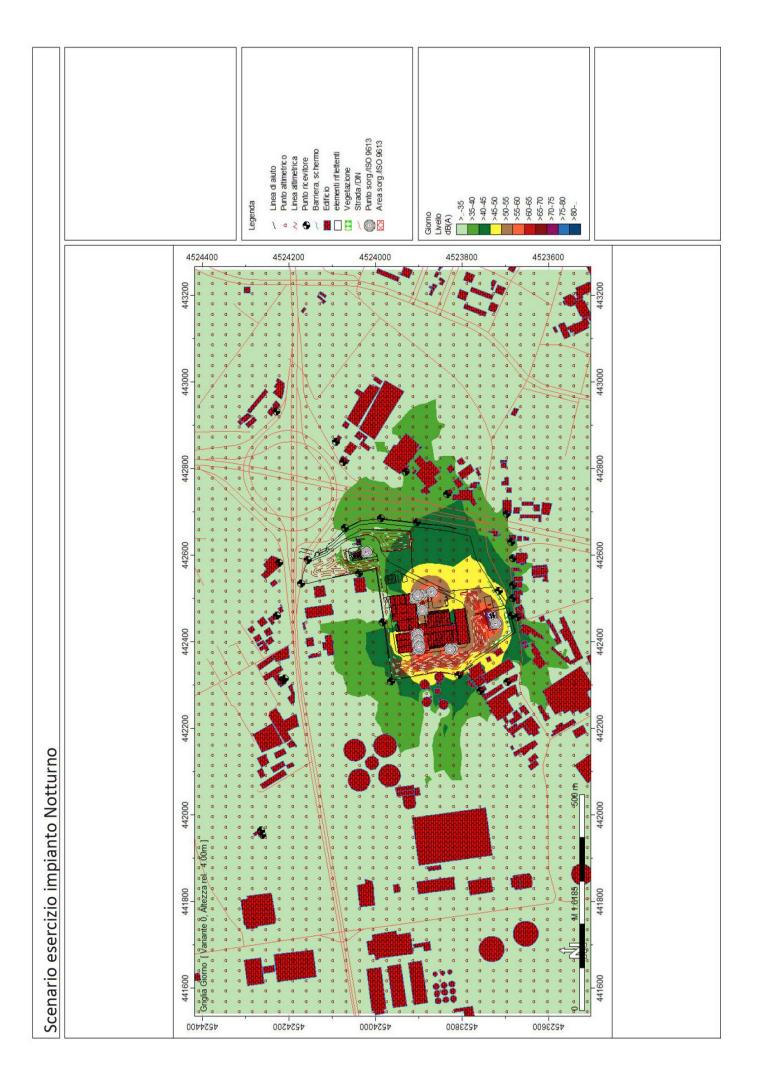












Z\Lavoro\acustica\2019\2019 - 08\ARETHUSA\IMPIANTO DI COMPOSTAGGIO NAPOLI EST - PONTICELLI\IMPIANTO DI COMPOSTAGIO NAPOLI EST - PONTICELLI PIÈ NEI PONTICELLI PIÈ NEI PONTICELLI PIÈ NEI PONTICELLI PIÈ NI PIÈ NEI PONTICELLI PIÈ NI PIÈ NI PIÈ NI PIÈ NI PIÈ NI

ELENCO REGIONALE DEI TECNICI COMPETENTI IN

ACUSTICA AMBIENTALE

PROVINCIA DI AVELLINO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
ACERBO FERDINANDO	25/03/67	MERCOGLIANO
ACOCELLA GABRIELE	15/09/64	AVELLINO
ALBANESE ALFONSO	10/02/74	CANDIDA
AMBROSINO MATTEO ANTONIO	08/06/55	DOMICELLA
AQUINO ORNELLA	11/11/81	AVELLINO
ARIANO VALERIO	09/04/78	MARZANO DI NOLA
BARBATO GABRIELLA	28/09/84	MONTORO
BARISANO EMILIO	24/10/57	FONTANAROSA
BASILE CARMINE	03/12/58	CALABRITTO
BATTISTA LUCIO	20/07/76	AVELLINO
BATTISTA MARIA ROSARIA	14/10/83	AVELLINO
BIONDO VINCENZO	28/10/67	ATRIPALDA
BOCCHINO SOCCORSO BERNARDINO	17/10/80	CASTELFRANCI
BOZZACCO CARMINE	25/05/76	MONTELLA
BUONFIGLIO ALESSANDRO	30/05/85	MONTORO INFERIORE
BUONFIGLIO NICOLA	10/08/82	MONTORO INFERIORE
CAMERLENGO CINZIA	19/11/65	ALTAVILLA IRPINA
CAPOBIANCO CAMILLO	04/07/69	AIELLO DEL SABATO
CAPONE GERARDO	20/09/53	AVELLINO
CAPOZZA EMILIANO	08/06/75	AVELLINO
CARACCIOLO ANTONIO	14/02/80	GESUALDO
CAROVELLO EMILIO	12/12/63	AVELLINO
CARPENTIERI SILVIO ANTONIO	13/09/62	SANTO STEFANO DEL SOLE
CASALE STEFANO	26/12/70	TAURASI
CASALINO PIETRO	08/02/68	MARZANO DI NOLA
CASCIELLO CARMINE	12/10/82	PAGO DEL VALLO DI LAURO
CASO FABIO	17/04/1968	AVELLINO
CASTAGNOZZI FILIPPO	08/02/54	ARIANO IRPINO
CATALDO SONIA	08/02/89	ATRIPALDA
CENTRELLA GAETANO	07/04/74	MONTEFORTE IRPINO
CHIARADONNA SALVATORE	08/07/83	ATRIPALDI
CIPOLLETTI MARIA ELISABETTA	22/07/78	SOLOFRA
CIPRIANO ANTONIO	09/12/62	STURNO
CIPRIANO LINA	06/10/71	VALLESACCARDA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
CIULLO ANTONIO	16/08/65	SAN MARTINO VALLE CAUDINA
CONTE NELLO	27/07/72	AVELLINO
CONTINO IOLE	07/09/58	AVELLINO
COSCIA CLOTILDE	23/05/67	MONTELLA
CRISTOFANO MARIO	12/02/73	VOLTURARA IRPINA
D'ANNA VALERIO	29/08/74	AVELLA
D'ORIA CARMINE	02/11/81	ATRIPALDA
D'ORIA RENATO	26/11/52	CESINALI
D'ORIA VITTORIA	04/08/78	GROTTOLELLA
DE ANGELIS MARIA GENOVEFFA	28/03/68	FLUMERI
DE GREGORIO LEDA	07/04/77	MIRABELLA ECLANO
DE LISA ANTONIO	22/09/67	AVELLINO
DE MAIO GIUSEPPE	30/11/64	MONTORO INFERIORE
DE SIMONE MELISSA	05/11/85	MONTELLA
DEIDDA MAURIZIO	11/02/65	AVELLINO
DEL MASTRO MARCELLO	23/01/80	MONTEFORTE IRPINO
DEL PARADISO GABRIELLA	04/12/74	AVELLINO
DEL RE GIUSEPPE MARIO	19/12/61	CALITRI
DEL REGNO GIUSEPPE	24/07/58	MONTORO INFERIORE
DELL'ORFANO FEDERICO	02/05/81	PAROLISE
DELLA SALA ANTONIO	08/12/86	MONTEFREDANE
DI LAURI FULVIO	31/05/58	CASSANO IRPINO
DI MARCO RAFFAELE GERARDO	22/03/67	CALABRITTO
DI MARZO GIUSEPPE	10/06/77	ARIANO IRPINO
DI NARDO FIORENTINO	03/10/54	MERCOGLIANO
ERCOLINO DOMENICO	24/02/80	MONTORO INFERIORE
ESPOSITO LUIGI	04/08/83	AVELLINO
FESTA FRANCESCO	22/08/72	AVELLINO
FILOMENA VINCENZO	09/09/62	ARIANO IRPINO
FIORE SERGIO	08/07/73	MONTEFORTE IRPINO
FLAMMIA PIETRO PAOLO	29/06/71	GROTTAMINARDA
FRASCIONE ANTONIO	16/03/88	BISACCIA
FUNGAROLI VINCENZO	30/03/56	CALABRITTO
GARGANO PASQUALE	07/05/70	AVELLINO
GELORMINI ROCCO	24/01/73	ARIANO IRPINO
GENOVESE PELLEGRINO	05/12/54	AVELLINO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
GIMIGLIANO ANNA	05/06/70	SANTA LUCIA DI SERINO
GIORDANO MARIO	04/03/55	GUARDIA DEI LOMBARDI
GUARINIELLO STEFANO	01/12/87	MONTORO
GUARINO FRANCESCO SAVERIO	19/05/71	MIRABELLA ECLANO
IMBRIACO ALESSANDRO	12/01/1973	VOTURARA IRPINA
IANDIORIO GIUSEPPE	28/03/85	MANOCALZATI
IANDOLO ALBERTO	30/04/79	SALZA IRPINA
IANDOLO ANTONIO	23/09/68	SAN POTITO ULTRA
IANDOLO CARMINE	18/08/65	AVELLINO
IANNELLA IRENE	14/08/79	AVELLIN O
IANNICIELLO LUIGI	05/05/57	FLUMERI
IANNICIELLO NICOLINA	30/07/92	FLUMERI
IANNUZZI ANTONIO	07/05/55	AVELLINO
LANZA SALVATORE DAVIDE	18/10/82	GROTTAMINARDA
LANZA TOMMASO ANTONIO	10/08/53	GROTTAMINARDA
LANZARA PIETRO	02/07/83	SOLOFRA
LEPORE CARMINE	28/03/76	ALTAVILLA IRPINA
LEPORE FRANCESCO	30/09/79	AVELLINO
LEPORE GENNARO	16/05/50	AVELLINO
LETTIERI VINCENZO	04/03/59	MONTORO SUPERIORE
LIMONE GUIDO	23/06/72	ATRIPALDA
LIMONE VINCENZO	08/02/69	ATRIPALDA
LO CONTE CIRIACO	14/09/71	ARIANO IRPINO
LOFFA MICHELARCANGELO	25/03/39	STURNO
LOMAZZO ASSUNTA MARGHERITA	20/08/59	VOLTURARA IRPINA
LUCADAMO EMILIO	28/04/73	AVELLINO
MAESTOSO MASSSIMO	20/04/63	AVELLINO
MAFFEI LUIGI	28/09/57	MIRABELLA ECLANO
MAINOLFI PIETRO	04/09/51	CERVINARA
MALAVENA GERARDO	20/03/78	ATRIPALDA
MANZI ALBA	05/03/64	QUINDICI
MANZI GENNARO	06/12/88	AVELLA
MARMORINO DOMENICO	15/06/66	CONTRADA
MARTINO MODESTINO	18/04/48	AVELLINO
MASUCCI ARMANDO	19/03/62	MERCOGLIANO
MATARAZZO ALFONSO	09/05/48	AVELLINO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
MATARAZZO ANDREA	27/01/85	AVELLINO
MATARAZZO GUIDO	26/12/74	AVELLINO
MAZZA ELIO	09/01/57	AVELLINO
MAZZARIELLO FLAMINIO	15/07/59	ATRIPALDA
MEGARO GIOVANNI	07/06/85	BAIANO
MELE LAURA	10/09/82	FORINO
MONTEVERDE RAFFAELE	21/03/50	CAPOSELE
MORANTE VINCENZO	24/05/71	GROTTOLELLA
NAPOLEONE STEFANIA MARIA	15/08//66	CARIFE
NAPOLITANO CARMINE	25/10/81	QUADRELLE
NAPPA CIRO	26/04/66	CESINALI
NEVLA LUIGI	19/09/84	SOLOFRA
NORMANNO PAOLO	06/01/73	SOLOFRA
OLIVA FRANCESCO	31/07/81	MONOCALZATI
PALMA ALFONSO	18/06/78	ATRIPALDA
PALO MASSIMILIANO	15/11/75	AVELLINO
PASQUA ANTONELLA	20/06/81	MERCOGLIANO
PASSIO LUCA	15/12/85	AVELLINO
PEDALINO SEBASTIANO	11/07/86	AVELLA
PELUSO MIRKO	17/11/81	AVELLINO
PERILLO GIUSEPPE	27/03/52	AVELLINO
PERONE MAURIZIO STEFANO	15/01/79	SAN MARTINO VALLE CAUDINA
PERSICO PASQUALE	09/02/73	LIONI
PESAPANE LUCA TEODORO	29/05/65	LAURO
PETRILLO MICHELE	22/01/74	VENTICANO
PIANTEDOSI EZIO	10/10/63	ROCCABASCERANA
PICARIELLO GIUSEPPE	21/03/81	CONTRADA
PICCOLELLA CANIO	19/10/49	AQUILONIA
PISANIELLO PASQUALE	03/11/74	SAN MARTINO VALLE CAUDINA
POLESTRA GIOVANNI	17/06/63	CALITRI
POLZONE CARMELA	17/07/78	PRATOLA SERRA
PRETA MICHELE	06/01/67	VOLTURARA IRPINA
PREZIOSI GIOVANNI	24/09/79	AVELLINO
QUARTIERI JOSEPH MARIA	01/01/50	MONTORO SUPERIORE
QUARTIERI LUANA	09/09/85	MONTORO SUPERIORE
RAGNO GIANLUCA	27/05/89	SORBO SERPICO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
RENZULLI PASQUALE	22/02/66	SAN MICHELE DI SERINO
RENZULLO ANTONIO	20/01/63	SALZA IRPINA
RINALDO ERNESTO	09/05/56	MONTEFORTE IRPINO
RIZZO GERARDO	02/02/56	SOLOFRA
ROMEI MARIANNA	10/05/77	SERINO
SALVATI ANIELLO	18/08/61	SANTO STEFANO DEL SOLE
SALZA ANTONIO	30/01/64	ARIANO IRPINO
SARNO UMBERTO	09/02/54	AVELLINO
SAVINO VINCENZO	13/11/62	MONTELLA
SCARFO' SARA	11/01/89	AVELLINO
SPAGNUOLO GIOVANNI	14/01/85	PATERNOPOLI
SPERANZA CARMINE	02/01/51	MONTEFREDANE
STANCO STEFANO	14/05/82	AVELLINO
SULLO MICHELANGELO	21/03/69	AVELLINO
SUPINO MARICARMELA	21/01/76	MONTEFORTE IRPINO
TAURASI FRANCESCO	03/08/66	AVELLINO
TEODOSIO CARMINE	20/02/76	MONTORO INFERIORE
TEODOSIO GIUSEPPE	18/02/75	MONTORO INFERIORE
TERRACCIANO MAURIZIO ROMANO	08/02/58	MONTEFORTE IRPINO
TERRACCIANO SCOGNAMIGLIO GIANCARLO	02/11/71	SIRIGNANO
TOMEO CARMINE	21/09/66	MONTEFORTE IRPINO
TROISI ANIELLO	28/01/86	MONTORO
TUCCIA LUIGI	28/06/64	ATRIPALDA
TUCCILLO DARIO	05/09/67	SOLOFRA
URCIUOLO SALVATORE	08/05/51	MERCOGLIANO
VALENTINO AGOSTINO	09/05/67	MONTEFORTE IRPINO
VECCHIARELLI CARMINE	08/03/67	MERCOGLIANO
VECCHIONE GERARDO	10/11/74	ATRIPALDA
VELE ANTONIO	27/11/65	ROTONDI
VIETRI VALENTINA	17/03/85	SOLOFRA
VIGILANTE BIAGIO	31/01/76	SOLOFRA
VIGLIOTTA NADIO	11/03/63	BONITO
VIGORITA PIETRO PAOLO	29/05/65	AVELLINO
VITALE MARIA GRAZIA	02/06/83	AVELLINO
ZARRELLA MICHELE	24/09/51	GESUALDO
ZIGARELLA VINCENZO	20/09/78	MERCOGLIANO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
ZIVIELLO ANTONIO	13/10/83	MONTELLA

PROVINCIA DI BENEVENTO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
ABBATIELLO CARMELA	21/09/1973	DURAZZANO
BOSCO GIUSEPPE	12/10/1943	BENEVENTO
BOTTE GIUDO	22/11/1945	FOGLIANISE
BRUNI FRANCESCA	11/02/1980	BENEVENTO
CANTERINO MARISA	20/11/1976	BENEVENTO
CAPORASO ANTONIO	27/08/1976	PONTE
CASTAGNOZZI LAURA	21/01/1969	BENEVENTO
CEFARIELLO FRANCESCO	25/01/1974	BENEVENTO
CONTE ALBERTO	30/12/1978	SAN GIORGIO DEL SANNIO
DE CORSO ALDO CARMINE	22/05/1963	SAN MARCO DEI CAVOTI
DE SOCCIO VITTORIO	23/03/1964	BENEVENTO
DI CAPRIO GIUSEPPE	17/07/1979	SANT' AGATA DEI GOTI
FIORE CARMINE	03/07/1960	BENEVENTO
FLORIO IRENE	04/06/1964	BENEVENTO
GALLO LUIGI ANTONIO	27/01/1954	PAOLISI
GISMONDI FRANCO	12/12/1950	CERRETO SANNITA
IANNACE CARLO ALBERTO	20/10/1966	SAN LEUCIO DEL SANNIO
IANNACE GINO	17/08/1964	SAN LEUCIO DEL SANNIO
IANNELLA BARBATO	28/02/1969	BENEVENTO
IRIDE ANTONIA	23/03/1977	CERRETO SANNITA
IZZO ANTONIETTA	03/11/1966	CAUTANO
IZZO MAURIZIO	05/03/1966	MONTESARCHIO
LEPORE ANTONIO	24/03/1970	SAN GIORGIO DEL SANNIO
LEPORE MASSIMO	27/11/1971	SAN GIORGIO DEL SANNIO
LOTTO MARIA ROSARIA	11/12/1961	MONTESARCHIO
MAIO LUCIA	23/04/1979	BENEVENTO
MARICONTE RAFFAELE	08/02/1976	GUARDIA SANFRAMONDI
MAZZA GIUSEPPE	13/06/1969	PONTE
MAZZILLI GIANMARIA	13/02/1977	SAN BARTOLOMEO IN GALDO
MEGLIO GIUSEPPE	11/03/1967	TELESE TERME
MIRANDA DANIELE	08/06/1977	ARPAISE
PIZZULLO SALVATORE	11/10/1966	SAN GIORGIO DEL SANNIO
PORCARO PIERO	26/05/1963	BENEVENTO
PRESUTTO ALESSANDRO	27/02/1985	TELESE TERME

26/03/1948

09/05/1965

CUSANO MUTRI

SAN NICOLA MANFREDI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
RAMPONE MICHELE	28/12/1972	BENEVENTO
ROMANO ANGELO	06/10/1962	SAN SALVATORE TELESINO
SACCOMANNO CLEMENTINA	30/10/1981	BENEVENTO
SIFONE VINCENZO	21/09/1983	SANT'ANGELO A CUPOLO
SILVESTRI GABRIELE	13/05/1965	BENEVENTO
TANUCCI ROBERTO	15/03/1958	MONTESARCHIO

VENDITTO EMILIO

VERNILLO NICOLA ANTONIO

PROVINCIA DI CASERTA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
AIEZZA ANGELO RAFFAELE	28/11/1969	PASTORANO
ALTAVILLA ALFONSO	10/11/1982	SANTA MARIA CAPUA VETERE
ANNICIELLO FAUSTO	02/06/1941	CASERTA
ANNICIELLO MARCO	22/01/1975	CASERTA
ARDITO ALDO	31/05/1968	SANTA MARIA A VICO
AUTIERO DARIO	28/09/1991	AVERSA
BARCA LUIGI	18/11/1969	CAPODRISE
BERNARDI GIACOMO	18/09/1978	MARCIANISE
BIZZARRO TERESA	16/12/1974	MARCIANISE
BLOSIO FRANCESCO	11/09/1973	SANTA MARIA CAPUA VETERE
BUONANNO ALFONSO	09/12/1972	GRICIGNANO D'AVERSA
CACCAVALE GIIORGIO	06/01/1972	CARINARO
CALCI GIUSEPPINA	14/10/1971	MONDRAGONE
CAMMAROTA VITTORIO	08/10/1981	SAN MARCELLINO
CAMPANIELLO GIUSEPPE	03/05/1976	VILLA DI BRIANO
CAPASSO CAMILLO	08/07/1967	SANT'ARPINO
CAPECE PAOLO	01/06/1967	CASERTA
CAPORASO LUCA	03/12/1972	AVERSA
CARFORA DANIELE	20/09/1984	SAN FELICE A CANCELLO
CAVAGNUOLO SALVATORE	21/01/1968	CASALUCE
CECERE ELISABETTA	15/07/1981	CAPODRISE
CECERE GENNARO	27/07/1971	MARCIANISE
CECERE GIUSEPPPE	12/01/1953	CAPODRISE
CEFARIELLO FRANCESCO	25/01/1974	CASAGIOVE
CENTRELLA GIOVANNI	16/10/1967	CASERTA
CERULLO TEODORO	06/07/1961	SAN CIPRIANO D'AVERSA
CHIOCCOLA FRANCESCO	28/09/1956	AVERSA
CIABURRO GIUSEPPE	22/05/1968	SAN NICOLA LA STRADA
CIASULLO GIOVAN BATTISTA	18/02/1976	CASAGIOVE
CIOTOLA VINCENZO	26/12/1980	SAN NICOLA LA STRADA
CIRILLO VINCENZO	19/04/1959	CASAL DI PRINCIPE

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
COCCO VINCENZO	04/12/1971	MACERATA CAMPANIA
COLELLA ANDREA	16/06/1984	MARCIANISE
COLELLA TOMMASO	07/04/1977	MARCIANISE
COLUCCI CLAUDIA	08/10/1984	PARETE
CONTE FEDERICO	10/03/1974	GRAZZANISE
CRISCI LAURA	19/06/1979	SAN FELICE A CANCELLO
CRISCI MARILENA	07/05/1973	SANTA MARIA A VICO
CRISOSTAMO ANTONIO	31/12/1965	AVERSA
CROCCO ANTONIO	05/08/1973	CASAPULLA
CUSANO RAFFAELLA	14/09/1979	RUVIANO
D'ONOFRIO VINCENZO	05/05/1977	CASERTA
D'ORTA FRANCESCO	30/11/1969	TEANO
DAL POGGETTO FRANCESCO	26/08/1966	CAPUA
DANIELE FABRIZIO	30/10/1972	CASAGIOVE
DE FILIPPO NICOLA	07/11/1953	MARCIANISE
DE LISA VINCENZO	03/10/1951	MONDRAGONE
DE LUCIA CLEMENTE	02/02/1953	SAN FELICE A CANCELLO
DE LUCIA RAFFAELE	24/12/1965	SANTA MARIA A VICO
DE ROSA ERNESTO	07/11/1972	CAPUA
DE ROSA ROLANDO	09/10/1961	CASALUCE
DEL GATTO FRANCESCO SAVERIO	20/02/1963	SAN NICOLA LA STRADA
DEL GENIO VINCENZO	15/10/1967	ALVIGNANO
DELLA VALLE TINO	19/04/1976	SANTA MARIA CAPUA VETERE
DEVASTATO SEBASTIANO	12/11/1951	MONDRAGONE
DI BUCCIO LIVIO	07/05/1966	PIEDIMONTE MATESE
DI CAPRIO GIANFRANCO	28/02/1974	ALIFE
DI CARLUCCIO DOMENICO	11/09/1961	MARCIANISE
DI FRANCESCO LUIGI	01/01/1952	CASERTA
DI GRAZIA GIOVANNI	10/09/1964	AVERSA
DI LEVA ANTONIO	18/12/1979	MARCIANISE
DI MARTINO DOMENICO	15/03/1983	CASAPULLA
DI MATTEO ANTONIO	25/03/1974	PIGNATARO MAGGIORE
DI MUZIO MARIO	03/01/1955	CASERTA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
DI PALMA FORTUNATO	03/07/1977	SANTA MARIA CAPUA VETERE
DI PASCALE GIUSEPPE	08/02/1966	MACERATA CAMPANIA
DI SALVO BALDUINO	13/06/1979	TEANO
DIANA GIOVANNI	05/05/1980	VILLA LITERNO
FALANGA LUIGI	08/07/1973	CASERTA
FALCONETTI DOMENICO	18/07/1961	MONDRAGONE
FAVA ANTONIO	21/04/59/	SESSA AURUNCA
FELICITA' MARCO	15/07/1982	AVERSA
FERRARA GIANLUCA	30/03/1983	SANTA MARIA A VICO
FERRARA PIETRO	21/02/1972	PARETE
FICOCIELLO ANTONIO	30/08/1972	SESSA AURUNCA
FIONDELLA GIANFRANCO	19/12/1973	GIOIA SANNITICA
FIORILLO ANTONIO	26/01/1975	ORTA DI ATELLA
FOLCO AMATO	09/02/1966	SAN PRISCO
FOLLERA CHIARA	11/05/1975	MONDRAGONE
FUSCO LUIGI	09/091972	CASERTA
GAGLIARDI BRUNO	10/12/1950	CASERTA
GAROFALO GIUSEPPE	25/08/1962	MADDALONI
GASBARRO ROBERTO	24/03/1957	CAPUA
GIAQUINTO NICOLA MARIO	08/12/1958	CASERTA
GIGLIO UMBERTO	02/08/79	MARCIANISE
GIORDANO LORENZO	04/06/1964	SANTA MARIA CAPUA VETERE
GIORDANO UGO	06/05/1965	SAN PRISCO
GIULIANO DOMENICO MARIO	08/09/1972	MARCIANISE
GIULIANO SILVIA	03/10/1972	MARCIANISE
GRADINI MARIACRISTINA	21/06/1977	SAN PIETRO INFINE
GRANIERI RAFFAELE	15/12/1976	AVERSA
GUIDA DAVIDE	13/03/1973	ARIENZO
IADICICCO NICOLA	20/07/1966	RECALE
IADICICCO SABRINA	23/09/1987	MARCIANISE
IENCO EUGENIO	13/12/1973	CASERTA
IMPERATORE GIUSEPPE	23/08/1963	CASERTA
IMPRODA ANTONIO	09/07/1974	TEVEROLA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
IODICE GIUSEPPE	27/07/1957	PORTICO DI CASERTA
IOVINE CATERINA	11/08/1977	CASERTA
IOVINELLA PASQUALE	31/01/1956	ORTA DI ATELLA
IZZI ROBERTO	02/12/1972	MADDALONI
LAGNESE GIUSEPPE	23/09/1975	PASTORANO
LANNA GABRIELLA	12/02/1986	FRANCOLISE
LATINO PIETRO	12/12/1985	MADDALONI
LEONETTI GIUSEPPE	22/10/1955	CASTEL MORRONE
LETIZIA VINCENZA MARIA	09/10/1981	MARCIANISE
LIMATOLA ANTONIO	16/06/1953	CASERTA
LIMATOLA RAFFAELE	28/10/1959	ORTA DI ATELLA
LUMINOSO PAOLO	19/09/1979	CASERTA
MAGLIOCCA ANTONIO	29/09/1963	SAN NICOLA LA STRADA
MAIORINO ROSA	05/08/1956	CASERTA
MAISTO ANTONIETTA	09/07/1966	SAN NICOLA LA STRADA
MARCHIONE SILVIA	22/04/1982	SANTA MARIA CAPUA VETERE
MARINO CIRO	12/01/1959	AVERSA
MARIZIA SALVATORE	29/01/1968	MONDRAGONE
MARRESE ATTILIO	17/06/1983	CARINOLA
MARTUCCI ALDO	06/01/1964	MONDRAGONE
MASTROIANNI ANTONIO	01/03/1949	SAN MARCO EVANGELISTA
MASTROIANNI GIOVANNI	15/04/1982	SAN NICOLA LA STRADA
MASTROIANNI PASQUALINA	31/03/1971	CASERTA
MAURO FRANCESCO	09/12/1984	SANTA MARIA CAPUA VETERE
MENDITTO LORENZO	21/07/1957	CASAGIOVE
MENDITTO LUIGI	29/04/1956	AVERSA
MIGLIACCIO LUIGI	04/08/1979	CESA
MIRABELLA EGIDIO	25/11/1955	TORA E PICCILLI
MIRAGLIA MICHELE	12/01/1961	MONDRAGONE
MONACO FRANCESCO	30/06/1949	SAN PRISCO
MONACO MARCELLO	17/06/1973	SANTA MARIA CAPUA VETERE
MONTANINO RICCARDO	28/03/1965	CAPUA
MONTANINO SALVATORE	07/06/1963	CAPUA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
MORGILLO VINCENZO	19/11/1974	ARIENZO
MOTTA SALVATORE	22/03/1963	SAN NICOLA LA STRADA
MOTTI ALFREDO MARIA	11/01/1975	AVERSA
MUSTO MARIA	13/03/1979	VILLA LITERNO
NAPOLITANO MICHELA	20/09/1984	SAN FELICE A CANCELLO
NAPPO GAETANO	23/11/1958	SAN FELICE A CANCELLO
NATALE ROSSELLA	30/06/1983	GRAZZANISE
NATALIZIO MAURIZIO	09/06/1964	PIEDIMONTE MATESE
NATRIELLO ROBERTO	19/06/1966	SANT'ARPINO
NUGNES PASQUALE	11/10/1957	LUSCIANO
OLIVA ANGELO	14/04/1985	ORTA DI ATELLA
PAGANO VINCENZO	07/11/1970	AVERSA
PALMIERO LUCA	21/09/1974	AVERSA
PELLE VINCENZO	15/01/1978	VALLE DI MADDALONI
PELLEGRINO ANTONIO	20/11/1975	SAN PRISCO
PELLEGRINO MASSIMILIANO	18/08/1965	SAN NICOLA LA STRADA
PENNACCHIA ANGELO	25/05/1948	AVERSA
PENNACCHIA OTTAVIO	22/10/1976	AVERSA
PERFETTO ALESSSANDRO	26/02/1974	CAPUA
PERILLO LUIGI	17/11/1967	CASERTA
PERO FERNANDO ANTONIO	23/07/1961	MONDRAGONE
PERRINELLA EMMANUEL	25/05/1979	CASAGIOVE
PERRONE VINCENZO GIOVANNI	22/12/1958	ALVIGNANO
PERROTTA ALESSANDRO	16/07/1972	SUCCIVO
PESCE FIORENZO	02/06/1965	SAN FELICE A CANCELLO
PETRONE AURELIO	08/04/1984	SAN FELICE A CANCELLO
PEZZULLO GIANLUCA	13/02/1964	CASERTA
PICCIRILLO SALVATORE	15/06/1972	CAPODRISE
PICCOLO ANGELO	15/09/1977	MARCIANISE
PISANTI GIOVANNI	24/06/2007	MADDALONI
PISAPIA DARIO	05/04/1971	CASERTA
PISCITELLI DOMENICO	30/05/1979	ARIENZO
POLITO TIZIANO	26/04/1972	MADDALONI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
POLVERINO ROBERTA	12/10/1982	SANT'ARPINO
PORFIDIA DOMENICO	25/12/1973	CAPODRISE
PUCA LUIGI	29/05/1973	GRICIGNANO D'AVERSA
RANUCCCI VALENTINA	08/07/1986	SPARANISE
RANUCCI ANTONIO	08/08/1980	SPARANISE
RANUCCI PASQUALE	06/02/1951	SPARANISE
REALE PELLEGRINO	26/01/1969	CASERTA
RENZO PAOLO	21/03/1987	ALIFE
RENZO SALVATORE	16/03/1947	ALIFE
RENZO VINCENZO	21/03/1979	ALIFE
RICCARDI SALVATORE	28/05/1977	VILLA LITERNO
RICCIARDI GIOVANNI RINO	18/10/1980	SAN MARCO EVANGELISTA
RICCIO NICOLA	05/03/1966	ALIFE
RICCIARDI DOMENICO	08/01/1969	CASERTA
RICIGLIANO ANTONIO POTITO	04/12/1936	PIEDIMONTE MATESE
RICIGLIANO AUGUSTO	12/09/1970	PIEDIMONTE MATESE
ROSSETTI DOMENICO	11/12/1962	CASAGIOVE
ROSSETTI TOMMASO	23/02/1984	CAIAZZO
ROVIELLO PIETRO	28/01/1965	CASAGIOVE
ROVIELLO VITTORIO	18/08/1958	CASAGIOVE
RUOTOLO ALFONSO	19/04/1986	SANTA MARIA A VICO
RUSSO ALESSANDRO	25/06/1965	MARCIANISE
RUSSO ANTONIO	26/03/1980	FALCIANO DEL MASSSICO
RUSSO DIEGO	17/10/1981	TUORO DI CASERTA
RUSSO GIUSEPPE	16/08/1960	ORTA DI ATELLA
SACCHETTI GIUSEPPE	23/02/1969	CASERTA
SALZILLO ANIELLO	22/02/1963	SAN PRISCO
SANGIOVANNI RAFFAELLO	22/02/1985	CAIAZZO
SANTILLO FILOMENA	06/10/1978	CAPUA
SANTILLO SALVATORE	06/05/1946	MACERATA CAMPANIA
SANTILLO SERGIO	11/08/1963	PIEDIMONTE MATESE
SATTO GIOVANNA	01/08/1956	AVERSA
SCHIAVO ELVIRA	17/09/1971	CASERTA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
SFERRAGATTA GIULIANA	14/03/1966	CAPUA
SICIGNANO LUIGI	14/04/1951	CASERTA
SILVESTRE GIUSEPPE	22/07/1971	AVERSA
SIMONETTI MEROLA SILVIO	15/12/1953	SANTA MARIA CAPUA VETERE
SORVILLO EMILIO	28/03/1971	MONDRAGONE
SPARACO VINCENZO	25/05/1976	MARCIANISE
SPERANDIO ROBERTO	16/01/1975	PIEDIMONTE MATESE
SPERLONGANO ROBERTO	07/12/1957	MONDRAGONE
SQUEGLIA GIOVANNI	02/03/1974	MARCIANISE
TAGLIACOZZI ANTONIO	21/08/1945	SANTA MARIA CAPUA VETERE
TARALLO GENNARO	27/06/1973	VITULAZIO
TARALLO VINCENZO	20/12/1963	AVERSA
TARTAGLIONE FULVIO	23/11/1966	CASERTA
TARTAGLIONE GABRIELE	16/01/1970	MARCIANISE
TARTAGLIONE MICHELE DIEGO	01/12/1976	MARCIANISE
TIERNO GIOVANNI	17/02/1982	CASAPULLA
TODISCO TERESA	22/12/1981	CAPODRISE
TRASACCO FULVIO	22/08/1976	AVERSA
TREMATERRA AMELIA	18/11/1965	AVERSA
TREMATERRA ANTONELLA	14/03/1967	AVERSA
TREMATERRA PATRIZIA	16/04/1971	AVERSA
VAIANO MADDALENA	08/04/1981	MARCIANISE
VALLONE LORENZO	18/04/1970	CASERTA
VANACORE NICOLA	02/09/1970	CASALUCE
VARRICCHIO ANTONIO	14/04/1975	CASAGIOVE
VENTRONE PELLEGRINO	27/01/1966	MADDALONI
VERDE NICOLA	11/08/1956	AVERSA
VISCO DANILO ADRIANO	10/10/1964	MARZANO APPIO
ZAMPELLA GIOVANNI BATTISTA	24/01/1962	SAN NICOLA LA STRADA
ZITO FERDINANDO	25/03/1954	TEVEROLA
ZUMBOLO ANTONIO	27/01/1963	CASERTA

PROVINCIA DI NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
ACAMPA MARIO SIMONE DAVIDE	06/11/1978	VOLLA
ACAMPORA SALVATORE	21/06/1984	AGEROLA
ACIERNO FRANCESCO	15/08/1941	POMPEI
AFFINITO MARCO	10/07/1969	NAPOLI
AIMONE ALDO	27/12/1951	NAPOLI
ALBANO LUIGI	13/04/1974	MASSA LUBRENSE
ALTERIO COSIMO	29/11/1976	NAPOLI
ALTIMARI ADELE	14/03/1975	CALVIZZANO
AMMIRATI PASQUALE	16/11/1952	OTTAVIANO
ANATRELLA SALVATORE	23/05/1950	NAPOLI
ANDINI DANIELE	18/07/1980	CASORIA
ANGELONI GIULIANO	18/09/1978	VILLARICCA
ANGELONI ROSALBA	03/11/1974	GIUGLIANO IN CAMPANIA
ANGELUCCI ARNALDO	16/09/1962	NAPOLI
ANNUNZIATA MASSIMO	03/02/1974	TERZIGNO
ANTONACCI ERNESTO	31/10/1947	NAPOLI
ANTONUCCI GIOVANNI	02/11/1965	NAPOLI
APREA RAFFAELE ALESSANDRO	10/05/1987	CASTELLAMMARE DI STABIA
ARUTA GIOVANNI	22/09/1954	NAPOLI
ASTRO PAOLO	18/05/1979	PIANO DI SORRENTO
ASTUTO PAOLA	08/04/1969	NAPOLI
ATTANASIO PAOLO	08/06/1939	NAPOLI
ATTIANESE TERESA	22/06/1968	SANT'ANTONIO ABATE
ATTILIO DANILO	28/04/1980	TORRE DEL GRECO
AURINO GABRIELE	07/11/1963	NAPOLI
AVALLONE MAURIZI O	25/09/1951	NAPOLI
AZZARO CLAUDIO	11/11/1967	NAPOLI
BADOLATO ALFREDO	14/01/1938	NAPOLI
BALESTRIERE SALVATORE	14/06/1976	NAPOLI
BARBATO FRANCESCO	29/12/1958	NAPOLI
BARBI CLAUDIA	24/11/1982	NAPOLI
BARONE ROBERTO	22/01/1968	PORTICI
BASILE GIOVANNI	26/03/1973	NAPOLI
BATTIPAGLIA GIACOMO	26/05/1973	NOLA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
BELISARIO VINCENZO	17/04/1984	ACERRA
BENEDETTO DIEGO	03/01/1965	NAPOLI
BERETTA ROBERTA	31/07/1978	NAPOLI
BERNARDO RAFFAELE	01/08/1948	NAPOLI
BETTA VITTORIO	20/02/1934	NAPOLI
BIANCARDI CLAUDIO	01/12/1955	NAPOLI
BLASIO ANGELO	18/03/1966	POMPEI
BOCCIA GIOVANNI	20/07/1959	SAN SEBASTIANO AL VESUVIO
BOEMIO FERDINANDO	12/07/1970	AFRAGOLA
BONANNO FABRIZIO	17/07/1970	BOSCOREALE
BREGLIA GENNARO	25/09/1972	TORRE ANNUNZIATA
BUCCIERO RAFFAELE	09/06/1943	TORRE ANNUNZIATA
BUONAGURO ANIELLO	29/07/1957	NOLA
BUSILLO CLAUDIO	13/12/1964	POMIGLIANO D'ARCO
CAIAZZO STEFANIA	12/11/1960	PORTICI
CALABRESE RAFFAELE	01/07/1974	SANTA MARIA LA CARITA'
CALABRESE SANTINA	07/04/1968	BRUSCIANO
CALCULLI GIUSEPPE	09/07/1969	NAPOLI
CALISE ANTONIO	11/12/1942	CASAMICCIOLA TERME
CAMMAROTA BRUNO	20/04/1952	NAPOLI
CANGIANIELLO GENNARO	23/01/1960	POGGIOMARINO
CANIGLIA GIACOMO	03/06/1980	VILLARICCA
CANZANIELLO GIOVANNI	01/02/1974	POZZUOLI
CAPASSO ANTONIO	02/10/1972	CASORIA
CAPASSO MICHELA GIUSEPPA	19/05/1981	SANT'ANASTASIA
CAPEZA STEFANO	18/09/1978	NAPOLI
CAPO ANTONIO	03/10/1965	NAPOLI
CAPOBIANCO SALVATORE	10/09/1954	AFRAGOLA
CAPORALI FRANCESCO	21/07/1980	NAPOLI
CAPPUCCIO SIMONE	15/09/1975	GIUGLIANO IN CAMPANIA
CAPUANO LUCA	09/10/1979	NAPOLI
CAPUANO PASQUALE	21/02/1963	FORIO
CAPUTO ALBERTO	25/08/1968	NAPOLI
CAPUTO MARIO	11/11/1966	NAPOLI
CAPUTO RAFFAELA	04/04/1982	NAPOLI
CARAMIELLO CRISTINA	06/01/1980	ACERRA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
CARLINO ANNA PAOLA	27/05/1967	SORRENTO
CARPENTIERI ANTONIO	15/12/1964	CERCOLA
CASADIO FILOMENA	05/10/1964	NAPOLI
CASADIO STEFANIA	07/08/1960	NAPOLI
CASELLI ALFREDO	09/06/1955	NAPOLI
CASINELLI MICHELE	11/02/1979	OTTAVIANO
CASTAGNA GIOVANNI	23/01/1963	NAPOLI
CASTAGNA GIUSEPPE	09/06/1972	CASAMICCIOLA TERME
CASTALDI ENRICA	29/04/1973	NAPOLI
CASTALDO BARBARA	09/12/1980	NAPOLI
CASTIELLO MARIO	23/11/1966	SAN GIORGIO A CREMANO
CASTIGLIONE FRANCESCO	28/08/1987	SAN GIORGIO A CREMANO
CASULA GIANLUCA	16/01/1974	NAPOLI
CATALANO PELLEGRINO	24/07/1958	GIUGLIANO IN CAMPANIA
CAVALIERE EUGENIO	19/04/1968	NAPOLI
CAVALIERE VINCENZO	16/07/1971	POZZUOLI
CECERE FRANCESCO	13/12/1971	MELITO DI NAPOLI
CELARDO VENERANDA	11/09/1978	NAPOLI
CELARDO VINCENZO	21/07/1976	NAPOLI
CELONE FRANCESCO	02/07/1966	TORRE ANNUNZIATA
CERRATO UMBERTO	21/08/1963	POLLENA TROCCHIA
CERULLI MICHELE	25/07/1960	POMIGLIANO D'ARCO
CERULLO LUIGI	21/05/1958	NAPOLI
CERVERA MORENO	20/12/1970	ISCHIA
CESARO MICHELE	14/10/1980	SANT'ANTIMO
CHIARI CLAUDIA	24/11/1971	NAPOLI
CHIAROMONTE FORTUNA	13/04/1976	NAPOLI
CHIRICO ANTONIO	14/09/1962	CAIVANO
CICALE GIUSEPPE	15/09/1978	GIUGLIANO IN CAMPANIA
CICCARELLI ANDREA	03/08/1961	MARIGLIANELLA
CIMMINO ROBERTO	14/04/1971	NAPOLI
CIOCCHI MARCO	30/09/1966	POZZUOLI
CIRELLI FLORA	02/11/1969	NAPOLI
CIRILLO VALERIA	28/04/1973	BOSCOREALE
COLANTONI EZIO	20/04/1959	NAPOLI
COLELLA GIANFRANCO	18/05/1964	NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
COLLOCA PAOLO	25/04/1967	VICO EQUENSE
CONTE PAONE ANIELLO	09/12/1964	CASORIA
COPPOLA FELICE	03/05/1980	CERCOLA
COPPOLA FRANCESCO	01/12/1946	VICO EQUENSE
COTRONEO CLAUDIO	09/03/1956	NAPOLI
CUCCURULLO FEDERICA	28/10/1981	NAPOLI
CUCCURULLO LUCA	12/08/1978	GIUGLIANO IN CAMPANIA
D'AGRESTI FRANCESCO	25/10/1975	NAPOLI
D'ALTERIO RENATO	31/07/1971	GIUGLIANO IN CAMPANIA
D'AMBROSIO GAETANO	18/12/1958	SOMMA VESUVIANA
D'ANGELI ALFONSO	15/10/1933	NAPOLI
D'ANIELLO ANDREA	24/07/1974	NAPOLI
D'ANIELLO EDUARDO	08/08/1946	NAPOLI
D'ANIELLO LUCIO	15/12/1955	NAPOLI
D'ANIELLO MICHELE	15/11/1973	NAPOLI
D'ERRICO GIUSEPPE	11/12/1956	AFRAGOLA
D'ERRICO NATALE	08/11/1965	SANT'ARPINO
D'ESPOSITO MARCO	14/11/1967	PIANO DI SORRENTO
D'ESPOSITO NUNZIA	04/08/1982	SANT'AGNELLO
D'ONOFRIO NICOLA	03/09/1986	ACERRA
DAL PIAZ ALESSANDRO	20/04/1939	NAPOLI
DALLIATINI RAFFAELE	04/01/1973	NAPOLI
DE ANGELIS DORA	04/04/1981	NAPOLI
DE CARLO GIUSEPPE	15/06/1980	GIUGLIANO IN CAMPANIA
DE CARO GIANPAOLO	05/11/1967	NAPOLI
DE CICCO ALESSANDRO	23/09/1964	NAPOLI
DE CIUTIIS FIORELLA	22/03/1977	NAPOLI
DE FALCO ROSARIO	17/01/1958	QUARTO
DE FELICE FABIO	01/12/1970	NAPOLI
DE LORENZO ANTONIO	10/04/1946	CERCOLA
DE LUCA BOSSO MARIO	30/07/1960	CERCOLA
DE LUCA SALVATORE	30/11/1954	NAPOLI
DE MARCO VINCENZO	29/05/1950	NAPOLI
DE ROSA AGOSTINO	19/09/1978	NAPOLI
DE ROSA GAETANO	01/05/1967	ARZANO
DE ROSA GIUSEPPE	27/01/1973	POSITANO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
DE ROSA SERGIO	25/08/1963	GRUMO NEVANO
DE ROSA SERGIO	16/08/1972	CASTELLAMMARE DI STABIA
DE SAPIO MARTINO	13/10/1967	NAPOLI
DE SIMONE ANTONIO	10/04/1958	VICO EQUENSE
DE STEFANO ANTONIO	06/08/1966	NAPOLI
DE STEFANO PASQUALE	03/05/1957	CASAMARCIANO
DE STEFANO VINCENZO	29/05/1947	NAPOLI
DE VITO GENNARINO	13/11/1970	CICCIANO
DEL GAUDIO ANTONIO	18/12/1954	MARIGLIANO
DELIZIA CORRADO	27/01/1968	NAPOLI
DELL'ISOLA ROSARIO	05/05/1967	NAPOLI
DELLO IOIO FABIO	22/06/1968	NAPOLI
DI BELLO FERNANDO	03/06/1944	SANT'ANASTASIA
DI BUONO ALBERTO	30/04/1965	ACERRA
DI BUONO VINCENZO	30/09/1966	ACERRA
DI COSTANZO PAOLO	29/11/1962	NAPOLI
DI DONATO ANTIMO	16/04/1978	SANT'ANTIMO
DI DONATO LUIGI	30/01/1963	VILLARICCA
DI FALCO ANGELO	07/05/1973	QUARTO
DI FIORE VINCENZO	20/11/1964	AFRAGOLA
DI GABRIELE MARIA	10/05/1979	CRISPANO
DI GENNARO LUCIANA	30/04/1982	NAPOLI
DI GIUSEPPE PASQUALE	22/08/1972	SANT'ANTIMO
DI JORIO EVA	14/07/1983	NAPOLI
DI LEVA GIANFRANCO	22/07/1969	SANT'AGNELLO
DI LORENZO ANTONIO	23/03/1969	GRUMO NEVANO
DI LORENZO TEODOLINDA	08/01/1983	GRUMO NEVANO
DI MARTINO FRANCESCO	14/04/1984	TORRE ANNUNZIATA
DI MARZO GIUSEPPE	10/06/1977	FRATTAMAGGIORE
DI MASO FRANCESCO	16/11/1946	NAPOLI
DI MICCO FEDERICO	02/10/1946	SANT'ANTIMO
DI PRISCO PIETRO	23/03/1973	MASSALUBRENSE
DI SARNO SALVATORE	09/02/1949	CAIVANO
DI SPIRITO NELLA	09/11/1974	SANT'ANTIMO
DIRETTO PASQUALE	25/06/1980	GIUGLIANO IN CAMPANIA
DISCETTI PAOLO	25/10/1976	NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
DRAMMATICO TOMMASO	01/01/1976	CASTELLAMMARE DI STABIA
ERRICHIELLO TAMMARO	03/04/1966	ARZANO
ERRICO ANTIMO	25/06/1943	SANT'ANTIMO
ESPOSITO ANTONIO	19/12/1965	PORTICI
ESPOSITO CATELLO	26/03/1948	CASTELLAMMARE DI STABIA
ESPOSITO GIACOMO	08/12/1974	NAPOLI
ESPOSITO GIOVANNI	06/02/1962	NAPOLI
ESPOSITO GIUSEPPE	20/06/1967	CASORIA
ESPOSITO ROBERTO	19/09/1985	NAPOLI
ESPOSITO VINCENZO	05/05/1967	MASSA DI SOMMA
EVANGELISTA LUCIANO	18/09/1957	NAPOLI
FERONE CESARE	20/06/1961	CASORIA
FERRAIUOLO STEFANO	30/08/1965	MASSA DI SOMMA
FERRARA ANIELLO	25/09/1953	CASALNUOVO
FERRARA UGO	01/04/1960	SAN GIORGIO A CREMANO
FERRARI GIORGIO	16/09/1950	NAPOLI
FERRI GIANLUCA	03/07/1966	NAPOLI
FERRIGNO LUCIO	05/04/1939	NAPOLI
FESTA GAETANO	10/08/1963	FRATTAMINORE
FIODO MASSIMO	23/04/1967	SANT'AGNELLO
FIORE ALFREDO	20/04/1976	TORRE DEL GRECO
FIORETTO MICHELE	01/08/1977	MELITO DI NAPOLI
FLORIS GIUSEPPE CARLO	01/11/1938	NAPOLI
FOGLIA ANTONIO	16/11/1967	NAPOLI
FONTANELLA MARIAGRAZIA	04/06/1973	MARANO DI NAPOLI
FORMICOLA LUIGI	04/01/1958	NAPOLI
FRANCESCON MAURIZIO	10/01/1950	ISCHIA
FRANCO CORRADO	07/09/1967	PORTICI
FRANCO FRANCESCO	09/10/1966	NAPOLI
FRANCO VINCENZO	03/10/1935	PORTICI
FRANCONIERO DANILO	19/10/1975	NAPOLI
FRANZESE ALESSANDRO	24/11/1982	OTTAVIANO
FRATTULILLO ELENA	20/11/1987	FRATTAMAGGIORE
FUSCHINO PASQUALE	02/05/1977	SANTA MARIA LA CARITA'
FUSCO ANTONIETTA	05/05/1955	NAPOLI
FUSCO GIUSEPPE	14/06/1950	NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
GALASSO ALFREDO	25/05/1968	SORRENTO
GALDERISI ADRIANA	24/11/1961	NAPOLI
GALIANO SERGIO	24/12/1967	MARANO DI NAPOLI
GALIERO GENNARO	19/09/1952	PORTICI
GALLO GIORGIO	23/10/1979	CASORIA
GARGIULO CARMELA	02/03/1961	BOSCOREALE
GARGIULO UGO	23/11/1973	CASTELLAMMARE DI STABIA
GENTILE FRANCESCO	10/05/1979	NAPOLI
GENTILE GIUSEPPE	20/06/1970	OTTAVIANO
GERVASIO PASQUALE	27/08/1972	FRATTAMAGGIORE
GESUELE LUIGI	29/11/1976	NAPOLI
GIACALONE ILARIA	15/07/1968	AGEROLA
GIANNELLA MARIA CLAUDIA	10/02/1981	MARANO DI NAPOLI
GIANNOTTI BIAGIO	15/04/1960	POZZUOLI
GIERI GABRIELLA	14/03/1976	NAPOLI
GIGANTE RAFFAELE	20/05/1955	NAPOLI
GILIBERTI LUIGI	11/11/1971	STRIANO
GIORDANO NICOLA	03/04/1961	ARZANO
GISOLFI MARIANO	25/02/1945	POMIGLIANO D'ARCO
GIURANNA GIULIO	13/02/1963	NAPOLI
GIUSTINO DOMENICO	06/06/1958	NAPOLI
GIUSTINO STEFANO	21/09/1974	NAPOLI
GRECO GIACOMO	25/07/1969	NOLA
GRIMALDI ALFONSO ANTONIO	25/10/1970	BOSCOREALE
GRUMETTI CLAUDIO	24/08/1962	NAPOLI
GUARINO ANTONIO	09/11/1968	NAPOLI
GUARINO LEOPOLDO	12/03/1973	NAPOLI
GUARINO MICHELE	08/09/1980	NAPOLI
GUARINO VINCENZO	23/06/1986	GIUGLIANO IN CAMPANIA
GUERRASIO GUIDO	15/12/1959	NAPOLI
GUERRIERO ROBERTO	30/03/1964	NAPOLI
GUZZI ALFONSO	26/04/1948	NAPOLI
IACOMINO PASQUALE	07/11/1932	ERCOLANO
IANDOLO ANTONIO	25/09/1956	NAPOLI
IANNACCONE ROSARIO	19/09/1967	POZZUOLI
IANNELLA SERGIO	12/01/1966	NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
IAVARONE CAMILLO	08/04/1960	NAPOLI
IMPERATORE GIOVANNI	05/01/1978	TORRE ANNUNZIATA
IMPERATORE LUIGI	07/09/1966	VILLARICCA
IOMMELLI ALFONSO	03/01/1983	NAPOLI
IOMMELLI DOMENICO	13/09/1957	NAPOLI
IOMMELLI SALVATORE	09/02/1966	NAPOLI
INGEGNO CARLO	13/02/1959	NAPOLI
IORIO GIORGIO	14/11/1965	PORTICI
IORIO LUIGI	20/06/1966	VOLLA
IORIO ROBERTO	16/07/1964	MARANO DI NAPOLI
IOVENE ENRICO	31/08/1978	BARANO D'ISCHIA
IUFFREDO RAFFAELE	15/07/1968	QUALIANO
IZZO ALFREDO	18/06/1959	NAPOLI
IZZO ANTONIO	04/06/1965	CASTELLAMMARE DI STABIA
LA MANTIA EMANUELE	06/10/1985	NAPOLI
LAEZZA FRANCESCO	07/10/1961	CASORIA
LAMBERTI CLAUDIO	10/02/1949	NAPOLI
LAMBERTI ROBERTA	16/08/1978	NAPOLI
LANZANO GENNARO	17/07/1970	AFRAGOLA
LANZUISE NATALE	05/07/1967	NAPOLI
LAPEGNA REMO	28/06/1957	NAPOLI
LAZZARO FABIO	26/07/1966	NAPOLI
LEMBO PAOLA	20/05/1968	POZZUOLI
LEMBO SABINO	26/07/1937	POZZUOLI
LEONETTI NICOLA	29/06/1979	ACERRA
LETTIERI IRENE	06/04/1976	NAPOLI
LIARDO ROSARIO	22/01/1966	NAPOLI
LIBERTI ROMUALDO	24/11/1960	NAPOLI
LICCARDO GIUSEPPE	22/11/1940	MUGNANO DI NAPOLI
LICCARDO ORSOLA	24/04/1973	MARANO DI NAPOLI
LICCIARDI CIRO	17/03/1969	NAPOLI
LINGUITI MARCELLO	02/03/1958	NAPOLI
LIPORI PAOLO	05/04/1969	NAPOLI
LISI ISABELLA	28/01/1976	NAPOLI
LISTA ELIO	19/04/1966	NAPOLI
LO CONTE PIETRO	26/01/1962	NAPOLI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
LOFFREDO GAETANO	23/05/1966	NAPOLI
LOMBARDO PASQUALE	16/05/1944	NAPOLI
LUBRANO ROBERTO	04/12/1963	TRECASE
LUONGO GENNARO	24/09/1984	OTTAVIANO
MAGGIO GAETANO	01/01/1976	ARZANO
MAISTO SUSANNA	10/03/1982	GIUGLIANO IN CAMPANIA
MAJA BRUNO	26/04/1965	NAPOLI
MALFI MAURIZIO	31/07/1956	NAPOLI
MANCINI PASQUALE	19/05/1954	NAPOLI
MANDARINI GIULIANO	05/05/1988	NAPOLI
MANGANIELLO RENATO	08/08/1950	NAPOLI
MANNA ANTONIO	02/03/1951	VOLLA
MANNA FRANCESCO	19/07/1971	POMIGLIANO D'ARCO
MARANO CIRO	16/01/1975	VILLARICCA
MARCHI MARCO	08/09/1963	NAPOLI
MARCIANO CLAUDIO	19/04/1963	ERCOLANO
MARFELLA LORENZO	11/09/1967	NAPOLI
MARGHERITA CLAUDIO	09/03/1969	NAPOLI
MARODER GIUSEPPE	14/11/1980	ERCOLANO
MARTELLO FRANCESCO	04/05/1955	NAPOLI
MARULO FRANCESCO	01/01/1955	BOSCOREALE
MASCOLO ELIODORO	06/06/1983	SANT'ANTONIO ABATE
MASELLI ALFREDO	10/07/1970	NAPOLI
MASTURZO OTTAVIO	02/02/1986	SANT'AGNELLO
MASULLO MASSIMILIANO	04/08/1973	NAPOLI
MATTERA GIUSEPPE	10/03/1984	FORIO
MAURELLI GIAMPAOLO	04/09/1959	NAPOLI
MELOTTI DIANA	07/07/1955	NAPOLI
MENDOLA ERNESTO	06/08/1960	NAPOLI
MENICHINI ORSINO	18/07/1973	MARIGLIANELLA
MENICHINO ORSINO	18/07/1973	MARIGLIANELLA
MENZIONE ANTONIO	06/01/1970	GIUGLIANO IN CAMPANIA
MERCURI ROSANNA	03/07/1967	CASALNUOVO
MEROLA VINCENZO	03/04/1970	NAPOLI
MIELE SILVIO	03/10/1958	NAPOLI
MIELE TERESA	31/03/1989	ROCCARAINOLA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
MIGLIACCIO AGOSTINO	09/05/1978	MARANO DI NAPOLI
MIGLIACCIO GENNARO	12/06/1968	MUGNANO DI NAPOLI
MIRANDA FRANCESCO	22/02/1954	POLLENA TROCCHIA
MOLARO SEBASTIANO	29/01/1965	CASTELLAMMARE DI STABIA
MONACO PIETRO	29/05/1946	SAN SEBASTIANO AL VESUVIO
MONTEFORTE SALVATORE	11/02/1964	CASAMARCIANO
MORACA FRANCESCO	05/10/1946	MARANO DI NAPOLI
MORRA ALFREDO	07/09/1982	NAPOLI
NACARLO LEONARDO	01/12/1971	MUGNANO DI NAPOLI
NAPOLANO GENNARO	16/02/1963	GIUGLIANO IN CAMPANIA
NAPOLITANO GIUSEPPE	23/07/1980	NOLA
NAPOLITANO LEONARDO	07/08/1969	CIMITILE
NAPPO PASQUALE	13/10/1951	POGGIOMARINO
NASTRO GIANLUCA	05/03/1977	POGGIOMARINO
NATALE GIUSEPPE	15/06/1956	ROCCARAINOLA
NETTUNO ARMANDO	12/05/1985	NAPOLI
NOCERINO GIOSAFATTE	18/12/1969	CASTELLO DI CISTERNA
NOTARO ERASMO	15/04/1987	NOLA
OTTIERI MARCO	24/04/1967	NAPOLI
PAGANO VINCENZO	20/02/1950	POGGIOMARINO
PAGNOTTO ANTONIO	04/03/1974	NAPOLI
PAGNOTTO DONATELLO	05/07/1970	NAPOLI
PALETTA ANTONIO	23/05/1966	PORTICI
PALMA VINCENZO	26/05/1977	GIUGLIANO IN CAMPANIA
PALUMBO NICOLA	18/12/1965	NAPOLI
PAOLONE GIUSEPPE	21/02/1967	MUGNANO DI NAPOLI
PAOLUCCI PIERLUIGI	03/04/1975	NAPOLI
PAPA AUGUSTO	27/01/1971	NAPOLI
PAPA GRAZIANO	13/08/1974	NAPOLI
PAPINO FRANCESCO	11/01/1988	CERCOLA
PARENTE GIUSEPPE	20/07/1942	NAPOLI
PARISI BIAGIO ROSARIO	07/03/1967	FRATTAMAGGIORE
PARRELLA FEDERICO	23/04/1970	NAPOLI
PECORARO ANTONIO SEBASTIANO	23/04/1961	POMIGLIANO D'ARCO
PEDRON MARIO	20/11/1982	CICCIANO
PELUSO ANTONIO	25/04/1958	POGGIOMARINO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
PELUSO VENANZIO	06/07/1961	POGGIOMARINO
PERNICE UMBERTO	27/01/1954	CASAMICCIOLA TERME
PETRONE GIOVANNI	16/12/1961	NAPOLI
PETRONE GIUSEPPE	29/06/1975	NAPOLI
PEZONE LUIGI	22/06/1972	FRATTAMINORE
PEZZULLO SOSIO MARINO	29/04/1959	FRATTAMAGGIORE
PICCIRILLO AURELIO	12/11/1945	GRAGNANO
PICCOLO GAETANO	02/08/1942	SAN GIORGIO A CREMANO
PICO ANTONIO	08/02/1951	GIUGLIANO IN CAMPANIA
PINGUE RENATO	30/09/1956	MELITO
PIROZZI DOMENICO	25/09/1961	GIUGLIANO IN CAMPANIA
PISCOPO VINCENZO	12/10/1947	NAPOLI
PONTICELLI MARGHERITA	19/06/1977	CASALNUOVO DI NAPOLI
PORRAZZO CIRO	10/02/1960	NAPOLI
PORTO ANTONIO	06/04/1982	AFRAGOLA
PRISCO FRANCESCO	10/10/1980	SAN GENNARO VESUVIANO
PROPATO VINCENZO	24/07/1957	NAPOLI
RAGUCCI ROSSANA	02/05/1964	NAPOLI
RAIA FRANCESCO LUIGI	13/07/1943	MARIGLIANO
RAIA MARCO	28/03/1982	SOMMA VESUVIANA
RAVEL VALERIO	03/03/1950	NAPOLI
REA ANGELO	29/08/1960	CASALNUOVO DI NAPOLI
RENELLA DARIO	15/01/1974	NAPOLI
RIANNA FELICITA	08/10/1964	NAPOLI
RICCIARDI LUIGI	27/06/1945	TORRE ANNUNZIATA
RICCIO RAFFAELE	28/04/1967	POZZUOLI
RODRIGUEZ EUGENIO	14/04/1944	CAPRI
ROMANO MARIO	29/10/1962	NOLA
RONCA SABATINO	15/08/1987	GIUGLIANO IN CAMPANIA
ROSEO GIACOMO	10/11/1963	GRAGNANO
RUOCCO CIRO	13/01/1972	CASTELLAMMARE DI STABIA
RUOPOLO SANDRO	31/08/1977	POMPEI
RUSSO ANTONIO	21/02/1949	NAPOLI
RUSSO IMMACOLATA	23/04/1972	META
SACCONE ROBERTO	01/01/1972	NAPOLI
SALERNO VINCENZO	03/08/1945	NAPOLI

ELENCO REGIONALE DEI TECNICI COMPETENTI IN ACUSTICA AMBIENTALE (art. 2, commi 6 e 7, Legge 447/95)

- aggiornato a	01.02.2016 -

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
SALOMONE PIETRO	06/03/1987	CASORIA
SALVATI FRANCESCO	09/12/1972	CASANDRINO
SALVIONE ANTONIO	23/07/1970	SAN GIORGIO A CREMANO
SANCHIRICO DONATO ENZO	24/09/1962	NAPOLI
SANNINO LUIGI	16/03/1970	PORTICI
SANNINO MICHELE	27/11/1963	NAPOLI
SANSONE MAURIZIO	17/12/1960	NAPOLI
SANTAMARIA AMATO CARLO	05/03/1948	NAPOLI
SANTELLA GIUSEPPE	06/02/1973	NOLA
SAULINO CLAUDIO	16/09/1954	NAPOLI
SAVARESE CARMINE	16/01/1968	SORRENTO
SAVARESE GIOVANN	31/05/1930	NAPOLI
SCAMARDELLA CATERINA	17/07/1978	GIUGLIANO IN CAMPANIA
SCARICO GENNARO	26/03/1967	POMPEI
SCARSELLI GENNARO	04/09/1971	NOLA
SCIANNIMANICA BARTOLOMEO	01/10/1949	NAPOLI
SCOLA ROBERTA	08/05/1975	NAPOLI
SCOTTI NICOLA	23/11/1971	NAPOLI
SCOTTO DI PERTA BARTOLOMEO	30/07/1976	PROCIDA
SENESE MARCO	30/05/1960	AFRAGOLA
SERAFINO ROSARIO	28/01/1967	NAPOLI
SESSA ROCCO	12/07/1984	FRATTAMAGGIORE
SICA GENNARO	18/10/1961	ERCOLANO
SIMONETTI ANDREA	27/08/1969	AFRAGOLA
SIVESTRI SANDRA	28/08/1963	PORTICI
SMORRA MARIA	12/12/1971	POZZUOLI
SOGARO SALVATORE	29/10/1964	NAPOLI
SOLLO ANTONIO	08/07/1962	TORRE DEL GRECO
SOMMA CIRO	15/12/1963	SORRENTO
SPAMPANATO FELICE	22/05/1973	CIMITILE
SPASIANO RAFFAELE	15/05/1965	ARZANO
SPIEZIA FILIPPO	23/06/1976	GRUMO NEVANO
SPINELLI MARCO	29/04/1951	BOSCOREALE
SQUILLACCIOTTI IVAN	12/03/1968	NAPOLI
STORNAIUOLO RAFFAELE	21/07/1984	NAPOLI
TACCOGNA MARIO	15/07/1960	SANT'ANASTASIA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
TAGLIAFERRI ALESSANDRO	16/11/1969	CASALNUOVO
TAGLIAFERRI DAVIDE	02/01/1971	GIUGLIANO IN CAMPANIA
TALAMO LUCIO	01/05/1950	NAPOLI
TALAMO TANIA	20/07/1978	NAPOLI
TAMANTINI LUIGI	20/03/1976	CASORIA
TAMANTINI REMO	04/01/1941	CASORIA
TAMMARO CIRO	01/10/1961	NAPOLI
TAMMARO GIUSEPPE	10/04/1960	TORRE DEL GRECO
TERRACCIANO ANTONIO	12/08/1976	MARIGLIANO
TERRACCIANO GAETANO	20/06/1976	MARIGLIANO
TESTA CARMINE	10/03/1968	NAPOLI
TESTA FRANCESCO	27/02/1981	QUALIANO
TITO ALESSANDRO	17/06/1973	SAN GIORGIO A CREMANO
TORRE VINCENZO	06/02/1985	NAPOLI
TORTORA FERDINANDO	13/12/1954	MARANO DI NAPOLI
TORTORA FRANCESCO	29/11/1971	CASAMARCIANO
TOSCANO FELICE	22/05/1967	POMIGLIANO D'ARCO
TRAMONTANO MADDALENA	13/09/1975	ARZANO
TRAMONTANO SERGIO	09/06/1951	NAPOLI
TRANI DENIS	24/04/1985	ISCHIA
TUFANO ANTONIETTA	19/05/1958	BOSCOREALE
URSOMANNO EMILIO	01/01/1967	POZZUOLI
VARRELLA VINCENZO	25/08/1958	NAPOLI
VENDITTI ALESSANDRO	05/08/1973	GIUGLIANO IN CAMPANIA
VENTRELLA FRANCESCO	24/05/1956	NAPOLI
VENTROSINI ENRICO	07/05/1955	PORTICI
VERDONE GIOVANNI	06/01/1960	TERZIGNO
VILLANO FRANCESCO	09/01/1971	MARIGLIANO
VISCARDI MASSIMO	28/01/1970	NAPOLI
VISONE CARMINE	09/02/1964	OTTAVIANO
VISONE MICHELE	13/05/1962	OTTAVIANO
VITIELLO MICHELE	14/03/1960	BOSCOTRECASE
VOLZONE GIUSEPPE	30/08/1971	ANACAPRI
ZITO GABRIELLA	13/07/1981	BRUSCIANO
ZIVIELLO VALTERINO	29/01/1964	NAPOLI
ZOGRAFOS BASILIO	07/04/1971	NAPOLI

PROVINCIA DI SALERNO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
ABRAMO GIUSEPPE	13/06/85	SALERNO
ACANFORA ROBERTO	12/03/84	SCAFATI
ACCONCIA MATTEO	22/10/52	MERCATO SAN SEVERINO
AGOSTINO ANGELA	26/04/72	SALERNO
ALCESTE CESARE	19/09/71	BATTIPAGLIA
ALFANO ANTONIO	30/08/75	CASTEL SAN GIORGIO
ALFANO KATIA	27/10/74	MONTECORVINO ROVELLA
AMARO MARINA	08/08/81	SCAFATI
AMATO ALFREDO	01/02/60	SALERNO
AMATO GIUSEPPE	24/08/60	SARNO
AMORELLI ERNESTO	18/04/69	MOLO DELLA CIVITELLA
AMOROSO PASQUALE	21/03/51	BATTIPAGLIA
ANGRISANI SIMONE	07/06/52	BATTIPAGLIA
ANNUNZIATA ALFONSO	29/06/80	SALERNO
APICELLA VINCENZO	05/04/77	MERCATO SAN SEVERINO
APICELLA VINCENZO	15/11/75	CAVA DE' TIRRENI
ARDIA ADRIANO	25/01/75	BARONISSI
ARIANO FRANCESCO	18/03/79	FISCIANO
ASCOLESE FAUSTO	06/12/81	SALERNO
ATTIANESE RAFFAELLA	19/05/81	NOCERA INFERIORE
AVAGLIANO CARMINE	16/04/74	CAVA DE' TIRRENI
AVALLONE EUGENIO	30/05/79	SALERNO
AVERSANO MARCO	24/12/73	SALERNO
BARBERIO GREGORIO	14/03/69	FISCIANO
BARONE GIOVANNI	10/08/47	SALERNO
BARRA FRANCISCO	03/09/59	SALERNO
BARRESI VINCENZO	07/09/73	CAMPAGNA
BARTIROMO CARMINE	25/10/75	NOCERA INFERIORE
BELGIORNO VINCENZO	02/10/65	VIETRI SUL MARE
BENARRIVATO FRANCESCO	06/01/65	SAPRI
BIGNARDI GIANMARIO	11/09/74	FISCIANO
BISACCIA LUIGI	11/04/64	BATTIPAGLIA
BISOGNO LUIGI	13/04/64	NOCERA SUPERIORE
BISOGNO NUNZIA	07/03/79	MERCATO SAN SEVERINO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
BOTTA ANNA	21/08/76	PALOMONTE
BOTTA LEONARDO	21/01/71	BRACIGLIANO
BOTTIGLIERI GIOVANNI	27/05/73	SALERNO
BUFANO POMPEO	16/06/60	BATTIPAGLIA
CAFARELLI GUGLIELMO	15/05/66	SALERNO
CAGGIANO GIOVANNI	07/09/72	POLLA
CALABRESE GIOVANNI	03/01/64	S. EGIDIO DEL MONTE ALBINO
CALIANO EDUARDO	22/07/78	MERCATO SAN SEVERINO
CALIFANO NELLO	28/03/78	NOCERA INFERIORE
CAMPITIELLO ALFONSO	02/08/77	SCAFATI
CANDILA SALVATORE	27/03/54	SALERNO
CANNONIERO GIOVANNI	05/10/64	SALERNO
CAPPIELLO PIERPAOLO	29/06/73	SALA CONSILINA
CAPRARA GASPARE	25/06/70	SALERNO
CAPUTI PASQUALENRICO	19/09/80	SALERNO
CAPUTO VITO	05/04/68	EBOLI
CARBONE CARMINE	25/09/63	BATTIPAGLIA
CARBONE IVO ROBERTO	12/10/72	SALERNO
CARRAFIELLO ANIELLO	13/12/61	BATTIPAGLIA
CARRATÙ CARMINE	12/12/74	ROCCAPIEMONTE
CASABURI FRANCESCO	02/12/56	SALERNO
CASCIELLO DANIELE	01/01/77	SCAFATI
CASCIELLO GENNARO	15/03/49	SCAFATI
CASTALDO SERGIO	18/08/51	BATTIPAGLIA
CERMI MARCO	05/10/75	ROCCAPIMONTE
CERRA LUIGI	03/05/68	BATTIPAGLIA
CHIRICO SALVATORE	01/02/50	TEGGIANO
CIANCIO VINCENZO	29/03/58	ROCCAPIEMONTE
CIAVOLA MARCO	02/11/84	SAN CIPRIANO PICENTINO
CICCARIELLO ANIELLO	08/05/69	CENTOLA
CICCARONE TULLIO	02/01/69	BATTIPAGLIA
CIMINO CONO FRANCESCO	30/09/80	TEGGIANO
CIOCIANO RICCARDO	04/04/70	CAMEROTA
CIRIGLIANO PASQUALE	08/02/74	BELLIZZI
CIRIGLIANO SALVATORE	03/07/48	BELLIZZI
CIRILLO RAFFAELE	19/03/49	SCAFATI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
CODA FRANCESCO	10/11/81	GIFFONI VALLE PIANA
COMITE GIANPIERO	09/01/72	EBOLI
CONTIERI ALBERTO	12/06/84	ANGRI
CONTURSI ANTONIO	22/01/42	SALERNO
COPPOLA GIANFRANCO	01/07/74	AGROPOLI
CORNETTA ANTONELLA	21/01/83	SALERNO
CORVINO DOMENICO	01/05/72	BATTIPAGLIA
COVIELLO ANTONIO	20/07/77	SALERNO
CUOMO ANTONIO	16/09/59	MERCATO SAN SEVERINO
D' AIUTO NICOLA ANIELLO	25/06/57	GIOI
D' ANGELO GIULIA	29/03/83	SARNO
D'ALESSIO MASSIMO	26/08/58	NOCERA INFERIORE
D'ALTERIO FRANCESCO	02/04/60	SALERNO
D'AMBROSIO GIOVANNI	23/08/64	BARONISSI
D'AMBROSIO SALVATORE	18/04/78	ANGRI
DE ANGELIS VINCENZO	19/04/68	EBOLI
DE BIASE RAFFAELE	05/05/79	SALA CONSILINA
DE CARO MARIA DEL CARMEN	14/08/75	CASTEL SAN GIORGIO
DE GREGORIO ANTONIO	11/04/67	MERCATO SAN SEVERINO
DE LAUSO GIANLUCA	12/03/68	POLLA
DE MARINO GIUSEPPE	03/10/52	VALLO DELLA LUCANIA
DE MARTINO ALFONSO	02/10/68	PAGANI
DE MARTINO FABIO	23/11/81	SALERNO
DE PASCALE DANIELA	09/11/83	SALERNO
DE PASQUALE LUIGI	09/03/68	SERRE
DE RISO GIORGIO	01/11/75	SALERNO
DE ROSA FRANCESCO	11/08/44	ALBANELLA
DE ROSA GIOVANNI	20/06/66	SALERNO
DE ROSA GIUSEPPE	27/01/73	POSITANO
DE SIMONE RAFFAELE	27/04/88	FISCIANO
DE SIO GIOVANNI	28/10/61	NOCERA INFERIORE
DEL DUCA MARIA CARLA	12/06/64	SALERNO
DEL FORNO ALFONSO	07/04/81	PAGANI
DELLA CORTE LUCA	17/02/92	PONTECAGNANO
DELLI BOVI CORRADO	26/11/59	MONTECORVINO ROVELLA
DETTA ANTONIO ERNESTO	27/11/76	MONTESANO SULLA MARCELLANA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
DI BARTOLOMEO MARCO	07/12/83	AGROPOLI
DI BONITO GENNARO	22/02/72	SALERNO
DI CURZIO RICCARDO	25/02/57	PONTECAGNANO FAIANO
DI GUGLIELMO MARIATERESA	16/07/66	SALERNO
DI LALLO LUIGI	22/01/57	SCAFATI
DI MARINO STEFANIA	16/08/83	ROCCAPIMONTE
DI PALMA RAFFAELE	05/08/51	PADULA
DI ROSARIO SERAFINO	10/08/76	SALERNO
EBOLI CARLA	22/08/69	SANZA
ESPOSITO LAURA	12/10/79	BRAGLIANO
EUSEBIO ANTONIO	11/08/65	AMALFI
FABBRICATORE CARLO	21/02/71	S. EGIDIO DEL MONTE ALBINO
FALLONE GIUSEPPE	04/03/84	AGROPOLI
FARINA MARIA	10/11/63	PONTECAGNANO FAIANO
FERRAIOLO ANNA	01/03/65	VIBONATI
FERRANTE ANTONIO	04/05/74	S. EGIDIO DEL MONTE ALBINO
FERRENTINO GIOVANNA	22/08/80	CASTEL SAN GIORGIO
FERRIGNO IVANO	16/04/77	SAN VALENTINO TORIO
FEZZA PAOLO	05/08/79	SALERNO
FIMIANI GIANLUCA	06/04/73	MERCATO SAN SEVERINO
FIORENTINO ANTONINO	29/01/85	FISCIANO
FIORILLO GIOVANNI	14/10/69	SALERNO
FIORILLO MARINA	05/02/87	MERCATO SAN SEVERINO
FONTANA PASQUALE	08/01/60	SCAFATI
FORTE STEFANIA	18/12/80	MONTANO ANTILIA
FORTINO ANDREA	25/01/62	NOCERA INFERIORE
FORTUNATO NICOLA	15/08/69	SALERNO
FRASCA BIAGIO	31/01/63	BELLIZZI
FREDA ERMANNO	29/04/68	SALERNO
FRIMALE LODOVICO	11/07/56	SALERNO
FUSCO ALDO	10/01/64	POSITANO
GAETA SALVATORE	13/06/68	ANGRI
GAGGIANO GIOVANNI	07/09/72	POLLA
GALIBARDI SERGIO	19/03/77	SALERNO
GALLUCCI LUCA SOCCORSO	17/12/67	ROCCAPIEMONTE
GARZIA SALVATORE	19/07/66	SALERNO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
GENTILE ALBERTO	12/03/79	ROCCAPIEMONTE
GENTILE VALERIO	04/09/55	SALERNO
GERBASIO DIEGO	05/05/81	SAN CIPRIANO PICENTINO
GIORDANO RAFFAELE	18/09/76	CAVA DE' TIRRENI
GIORDANO SABATO	23/03/81	MERCATO SAN SEVERINO
GIULIANI STEFANO	02/01/84	ROCCADASPIDE
GIULIANI TOMMASO MARIA	06/03/65	AGROPOLI
GORRASI GIOVANNI	25/04/59	CASTEL SAN LORENZO
GRAZIANO DOMENICO	10/05/80	SALERNO
GRAZIUSO GIOVANNI	17/01/71	CASTEL SAN LORENZO
GREGORIO VINCENZO	28/09/62	CAPACCIO
GUADAGNO GENNARO	30/06/64	SALERNO
GUARNACCIA CLAUDIO	30/08/79	NOCERA INFERIORE
GUIDA ANIELLO	06/09/69	NOVI VELIA
GUIDA ANTONIO	19/07/66	EBOLI
IANNIELLO CARMINE	18/03/43	S. EGIDIO DEL MONTE ALBINO
IANNIELLO ELVIRA	09/09/75	PAGANI
IANNONE GERARDO	09/08/83	FISCIANO
IANNONE GIANLUCA	06/09/76	FISCIANO
IANNUCCI PATRIZIA	15/09/82	SALERNO
IANNUZZELLI IVANA	19/02/68	SAN MANGO PIEMONTE
IAPICCO GERARDO	25/01/80	NOCERA INFERIORE
IMBRIACO ALESSANDRO	07/04/80	SALERNO
IMBRIACO DARIO	13/05/84	SALERNO
IMBRIACO FLAVIO	29/04/49	SALERNO
INGENITO ANTONIO	20/04/65	ALTAVILLA SILENTINA
INGENITO MICHELE	03/07/80	SARNO
IOVANE ALFONSO	03/11/83	SCAFATI
IOZZINO SALVATORE	05/12/74	ANGRI
IPPOLITI ALMERICO	19/06/65	SALERNO
IPPOLITO ANTONIO	23/05/65	SANT'ARSENIO
LA FRANCESCA GIOVANNI	12/12/74	BATTIPAGLIA
LABONIA MICHELE	07/04/68	PAGANI
LAEZZA ROCCO	21/02/56	SANT'ARSENIO
LAGRECA ANTONIO	24/07/76	MONTESANO SULLA MARCELLANA
LAMBERTI NICOLA ANTONIO	04/06/59	FISCIANO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
LAMBIASE EMILIO	01/01/56	CAVA DE' TIRRENI
LAMBIASI ANTONIETTA	15/01/77	FISCIANO
LANDI DOMENICO	26/10/64	PONTECAGNANO FAIANO
LANDI LUISA	07/12/76	FISCIANO
LAURINO LUIGI	01/01/54	EBOLI
LENZA TONY LUIGI LEOPOLDO	24/08/62	CONTURSI TERME
LEPORE MARCELLO ANTONIO	09/07/73	CAVA DE' TIRRENI
LEPRE VINCENZO	09/06/49	SAN CIPRIANO PICENTINO
LIGUORI LUIGI	23/02/79	SALERNO
LOPARDO GINO	07/01/69	ATENA LUCANA
LORIA ORLANDO	19/09/67	SALERNO
LOSCO GIUSEPPE	02/03/62	EBOLI
LUCIANO ANDREA	17/04/86	CAVA DE' TIRRENI
MALANGONE LUCA	28/06/77	PONTECAGNANO FAIANO
MANZIONE GENNARO	01/12/65	CONTURSI TERME
MANZIONE SALVATORE	22/02/69	CONTURSI TERME
MANZO BARBARA	24/11/78	SALERNO
MARCANTONIO ANTONIETTA	11/03/65	SALERNO
MARTINO NICODEMO	08/02/82	GIFFONI VALLE PIANA
MASTURZO ANTONIO	26/09/73	SALERNO
MASUCCI ANTONIO	06/01/50	BATTIPAGLIA
MASUCCI MARCO	08/08/68	GIFFONI VALLE PIANA
MATTEI ANTONIO	08/06/67	SALERNO
MATTEO ROCCO	14/07/68	SALERNO
MAZZARELLA FABRIZIO	17/04/80	CAVA DE' TIRRENI
MEMOLI GIANLUCA	25/04/74	SALERNO
MEMOLI MAURIZIO	23/06/65	PELLEZZANO
MENOTTI GIULIO	30/01/46	FISCIANO
MIANO VINCENZO	24/10/72	ROCCODASPIDE
MIELE ANGELO	12/11/57	ANGRI
MILANESE MARIA PAOLA	23/01/80	PELLIZZANO
MINELLI GIANCARLO	26/03/66	SALERNO
MIRABELLI GERARDO	20/07/80	MERCATO SAN SEVERINO
MIRRA MICHELE	28/07/70	AMALFI
MODESTI MANUELA	07/02/79	SALERNO
MOLLO GIOVANNI	19/09/46	BATTIPAGLIA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
MOLLO GIUSEPPE	02/05/75	BATTIPAGLIA
MONTANO CARMINE	21/03/77	ASCEA
MONTEFUSCO PASQUALE	10/04/79	EBOLI
MONTONE ANTONIO	09/06/71	CASTELLABBATE
MONTORO FABRIZIO	29/08/81	VALLO DELLA LUCANIA
MORMILE SOSSIO	30/04/57	CAVA DE' TIRRENI
MUCCIOLO CLAUDIA	17/03/73	VIBONATI
MURRONE FEDERICO	15/08/64	BATTIPAGLIA
NAPOLI VINCENZO	30/07/50	SALERNO
NEGRI NICOLA	25/01/70	BARONISSI
NESE NICOLA	04/07/65	SALERNO
NIGRO GENESIO	09/08/60	ALTAVILLA SILENTINA
NOTAR FRANCESCO MICHELE	11/07/72	SALA CONSILINA
NOVARESE GIANVINCENZO	26/08/81	SALERNO
OREFICE MARCO	01/12/73	NOCERA INFERIORE
ORLANDO ANTONIO	18/03/71	BARONISSI
PACCOI MASSIMO	16/05/57	SALERNO
PAGANO ANNA	02/08/73	FISCIANO
PAGANO FERDINANDO	03/08/86	NOCERA INFERIORE
PAGLIONICO FERNANDO	31/01/70	BARONISSI
PAGNOTTO GIUSEPPE	03/02/43	FELITTO
PALANCA GIANCARLO	25/10/65	GIFFONI SEI CASALI
PALLADINO CARLO	18/08/70	SALERNO
PANARIELLO VINCENZO	23/12/73	SCAFATI
PANTULIANO ROSAMARIA	10/05/75	SALERNO
PAOLILLO GERARDO	21/02/79	PAGANI
PAOLILLO MASSIMILIANO	12/06/69	CAVA DE' TIRRENI
PAPALEO LUIGI	21/06/59	SALA CONSILINA
PASSARO PASQUALE	18/02/70	SALERNO
PEDONE ESPEDITO	17/08/76	NOCERA SUPERIORE
PELLEGRINO VINCENZO	12/05/63	CAVA DE' TIRRENI
PERROTTA GIANPIERO	29/07/72	BELLIZZI
PETTI FRANCESCO	24/10/78	NOCERA INFERIORE
PICARELLA MICHELINA	11/06/71	MERCATO SAN SEVERINO
PICCOLO FEDERICO	20/07/73	NOCERA INFERIORE
PIGRO UGO	21/09/40	POLLA

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
PISANI GIANCARLO	22/05/74	CONTURSI TERME
PISCOPO VINCENZO	29/03/83	SALERNO
PISCOSQUITO ANTONIO	06/04/78	SARNO
PIZZUTI SANTE	31/07/72	MONTECORVINO ROVELLA
PLESCIA NICOLAMARIA	12/02/76	FISCIANO
POLITO FAUSTO	05/01/60	CASTELLABATE
POLVERINO RAFFAELLA ANNA	23/02/69	CAVA DE' TIRRENI
PUNZO LUCA	11/12/75	VALLO DELLA LUCANIA
PUPPO AGOSTINO	13/03/65	CONTURSI TERME
PUPPO GIUSEPPE	04/05/67	SCAFATI
RAGO DONATO	29/05/64	SALERNO
RAGO LUCA	20/01/76	BARONISSI
RAIMO RAFFAELE	23/09/68	PELLEZZANO
RASO MAURIZIO	09/06/65	SALERNO
RISI LUIGI	02/10/65	BARONISSI
RISI VALERIA	22/01/79	SALERNO
RIZZO FERDINANDO	30/08/89	PIAGGINE
ROMANO ANTONIO	05/11/80	SALERNO
ROSSO SERENA	16/02/77	SALA CONSILINA
RUGGIERO ANNA	11/03/87	FISCIANO
RUGGIERO GIOVANNI	10/04/78	NOCRA INFERIORE
RUOCCO SABATO	22/03/77	VALLO DELLA LUCANIA
RUSSO ANNA RAFFAELLA	26/04/79	PAGANI
RUSSO CLAUDIA	12/07/85	GIFFONI SEI CASALI
RUSSO FELICE	01/01/49	PAGANI
RUSSO LAURA	13/06/80	SIANO
RUSSOMANNO PAOLO	08/10/80	SALERNO
SACCO ANNA PIA	15/10/69	ALTAVILLA SILENTINA
SALERNO PAOLO	21/01/62	PONTECAGNANO FAIANO
SAMMARTINO FRANCESCO	27/06/79	SALERNO
SANTONICOLA ROCCO	25/05/78	SALERNO
SARACINO IVAN	28/10/77	BRACIGLIANO
SATURNO GIOSUE' GERARDO	25/10/79	CAMEROTA
SAVIGNANO ANTONIO	11/06/78	SALERNO
SCAFURO STEFANO	02/09/73	CALVANICO
SCALESE RAFFAELE	10/09/48	PELLEZZANO

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
SCARANO VINCENZO	16/10/72	NOCERA INFERIORE
SCELZA CESARE	29/01/69	SCAFATI
SCHIANO DI COLA FRANCESCO	13/11/86	PELLEZZANO
SCIARAFFA ROMUALDO	17/06/66	SALERNO
SCOVOTTO ALESSANDRO	08/06/73	PONTECAGNANO
SCUTIERO DAMIANO	04/05/78	ANGRI
SCUTIERO SALVATORE	11/05/80	ANGRI
SENESE ANTONIO	11/10/69	BATTIPAGLIA
SIANO ANIELLO	24/12/69	SARNO
SIEYES ROBERTO	27/09/75	SAN MAURO CILENTO
SIRICA FABRIZIO	24/02/73	NOCERA INFERIORE
SIRICA MICHELE	14/12/65	NOCERA INFERIORE
SOLDOVIERI ERNESTO	21/08/67	OLEVANO SUL TUSCIANO
SOMMA MASSIMO	20/11/60	SALERNO
SORRENTINO PAOLO	04/08/82	TORCHIARA
SORRENTINO PASQUALE	13/08/70	CASTEL SAN GIORGIO
SPADA ANNA	21/11/76	PAGANI
SPATOLA ANNA LISA	19/09/74	SALERNO
SPINELLI LUIGI	17/09/69	BARONISSI
STARACE FERNANDO	21/08/67	SALERNO
STREPPONE MARCELLINO	18/05/72	CAMEROTA
STRIFEZZA GIUSEPPE	09/01/71	BELLIZZI
SUOZZO ANGELO	06/08/67	PONTECAGNANO
TARABBO LUIGI	21/06/83	SALERNO
TARALLO UMBERTO	21/03/83	MAGLIANO VETERE
TASSO ROCCO	28/05/70	BATTIPAGLIA
TERRALAVORO FABIO	09/05/81	SALERNO
TERRONE FRANCESCO	05/06/61	MERCATO SAN SEVERINO
TROCCHIA JONATHAN	29/11/74	BATTIPAGLIA
TROIANO PAOLO	20/07/77	MERCATO SAN SEVERINO
TURI FEDERICA	07/12/74	AGROPOLI
VASSALLO GIUSEPPE	28/03/72	SASSANO
VENEZIANO ANTONIO	30/11/52	NOCERA INFERIORE
VENTURI PIERPAOLO	17/06/74	PELLEZZANO
VERNIERI GIANLUCA	17/07/75	PELLEZZANO
VIGNAPIANO NICOLA	04/01/78	ANGRI

COGNOME e NOME	DATA DI NASCITA	RESIDENZA
VILLARI VALENTINA	09/06/86	FISCIANO
VILLECCO MARCELLO	26/02/67	SALERNO
VISCONTI DOMENICO	02/08/66	EBOLI
VITACCA MARIA	03/01/55	SALERNO
VITALE ANTONIO	18/04/49	CAVA DE' TIRRENI
VITALE GIUSEPPE	23/05/69	SALERNO
VITO BERNARDO	25/09/78	MONTECORVINO ROVELLA
ZAMBRANO ANGELINA	10/01/51	SALERNO
ZAMPOLI ANTONIO	10/06/45	MERCATO SAN SEVERINO
ZAMPOLI VITTORIO	13/08/78	MERCATO SAN SEVERINO
ZOCCOLA ANTONIO	20/06/55	PONTECAGNANO FAIANO